• 제목/요약/키워드: ${\omega}$-left-symmetric algebra

검색결과 2건 처리시간 0.014초

WEYL STRUCTURES ON COMPACT CONNECTED LIE GROUPS

  • Park, Joon-Sik;Pyo, Yong-Soo;Shin, Young-Lim
    • 충청수학회지
    • /
    • 제24권3호
    • /
    • pp.503-515
    • /
    • 2011
  • Let G be a compact connected semisimple Lie group, B the Killing form of the algebra g of G, and g the invariant metric induced by B. Then, we obtain a necessary and sufficient condition for a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) to be projectively flat (resp. Einstein-Weyl). And, we also get that if a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) which has symmetric Ricci tensor $Ric^D$ is projectively flat, then the connection D is Einstein-Weyl; but the converse is not true. Moreover, we show that if a left invariant connection D with Weyl structure ($D,\;g,\;{\omega}$) on (G, g) is projectively flat (resp. Einstein-Weyl), then D is a Yang-Mills connection.