• Title/Summary/Keyword: ${\mu}$-invariants

Search Result 3, Processing Time 0.019 seconds

HOMOLOGY 3-SPHERES OBTAINED BY SURGERY ON EVEN NET DIAGRAMS

  • Lee, Sang-Youl
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.815-834
    • /
    • 2012
  • In this paper, we characterize surgery presentations for $\mathbb{Z}$-homology 3-spheres and $\mathbb{Z}/2\mathbb{Z}$-homology 3-spheres obtained from $S^3$ by Dehn surgery along a knot or link which admits an even net diagram and show that the Casson invariant for $\mathbb{Z}$-homology spheres and the ${\mu}$-invariant for $\mathbb{Z}/2\mathbb{Z}$-homology spheres can be directly read from the net diagram. We also construct oriented 4-manifolds bounding such homology spheres and find their some properties.

ON n-*-PARANORMAL OPERATORS

  • Rashid, Mohammad H.M.
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.549-565
    • /
    • 2016
  • A Hilbert space operator $T{\in}{\mathfrak{B}}(\mathfrak{H})$ is said to be n-*-paranormal, $T{\in}C(n)$ for short, if ${\parallel}T^*x{\parallel}^n{\leq}{\parallel}T^nx{\parallel}\;{\parallel}x{\parallel}^{n-1}$ for all $x{\in}{\mathfrak{H}}$. We proved some properties of class C(n) and we proved an asymmetric Putnam-Fuglede theorem for n-*-paranormal. Also, we study some invariants of Weyl type theorems. Moreover, we will prove that a class n-* paranormal operator is finite and it remains invariant under compact perturbation and some orthogonality results will be given.

Multiple Source Modeling of Low-Reynolds-Number Dissipation Rate Equation with Aids of DNS Data

  • Park, Young-Don;Shin, Jong-Keun;Chun, Kun-Go
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.392-402
    • /
    • 2001
  • The paper reports a multiple source modeling of low-Reynolds-number dissipation rate equation with aids of DNS data. The key features of the model are to satisfy the wall limiting conditions of the individual source terms in the exact dissipation rate equation using the wall damping functions. The wall damping functions are formulated in term of dimensionless dissipation length scale ι(sup)+(sub)D(≡ι(sub)D($\upsilon$$\xi$)(sup)1/4/$\upsilon$) and the invariants of small and large scale turbulence anisotropy tensors. $\alpha$(sub)ij(=$\mu$(sub)i$\mu$(sub)j/$\kappa$-2$\delta$(sub)ij/3) and e(sub)ij(=$\xi$(sub)ij/$\xi$-2$\delta$(sub)ij/3). The model constants are optimized with aids of DNS data in a plane channel flow. Adopting the dissipation length scale as a parameter of damping function, the applicabilities of $\kappa$-$\xi$ model are extended to the turbulent flow calculation of complex flow passages.

  • PDF