• Title/Summary/Keyword: ${\mu}$ Synthesis

Search Result 1,510, Processing Time 0.027 seconds

Melanogenesis Inhibitory and Antioxidant Activities of Phellinus baumii Methanol Extract (장수진흙버섯 메탄올 추출물의 멜라닌 생성 저해작용)

  • Lee, J.S.;Shin, D.B.;Lee, S.M.;Kim, S.H.;Lee, T.S.;Jung, D.C.
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.104-111
    • /
    • 2013
  • Phellinus baumii is a medicinal mushroom used in Asian countries for a long period of time. The purpose of this study was to investigate the skin whitening activities of methanol extracts from fruiting bodies of P. baumii. To evaluate the antioxidant activities of the extract, polyphenol and flavonoid contents, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity and chelating activity on ferrous ions were studied. For assay of skin whitening activities, tyrosinase and DOPA inhibitory activities, and tyrosinase and melanin synthesis inhibitory activities of B16/F10 melanoma cells treated with the methanol extract were investigated. The total polyphenol content of P. baumii methanol extract was 4.19. DPPH scavenging ability of P. baumii methanol extract was 88.26% in $25{\mu}g/mL$ concentration. We tested tyrosinase inhibitory activity and melanin contents in melanoma cells. The tyrosinase activity was inhibited to 65.17% at the concentration of $125{\mu}g/mL$ and melanin synthesis was inhibited to 57.61% at the concentration of $25{\mu}g/mL$. Overall, the experimental results showed that P. baumii methanol extract had inhibitory activities of tyrosinase and melanin synthesis by dose dependent manner in B16/F10 melanoma cells. Strong ultra-violet absorption spectra in the range of 270~370 nm indicated that ethanol extract of P. baumii could protect the skin from UV. Therefore, P. baumii methanol extract might be used for development of skin whitening, anti-UV and skin care agents.

Inhibitory Effects of Ethanol Extracts from Pine Buds (Pinus densiflora) on Angiotensin Converting Enzyme, Xanthine Oxidase and Nitric Oxide Synthesis (소나무 새순 에탄올 추출물의 angiotensin converting enzyme, xanthine oxidase 및 nitrix oxide synthase 활성)

  • Cho, Eun-Kyung;Song, Hyo-Ju;Cho, Hea-Eun;Kim, Mi-Hyang;Choi, In-Soon;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1629-1636
    • /
    • 2009
  • Pine trees (Pinus densiflora Sieb. et Zacc.) have been used as a traditional health-promoting medicinal food in Korea. This research was performed to determine the antioxidative and antibacterial activities, tyrosinase, nitric oxide synthesis, angiotensin converting enzyme (ACE), and xanthine oxidase inhibition effects of the pine bud ethanol extract (PBE). Antioxidative activities of PBE were measured by using 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging activity and superoxide dismutase-like activity (SODA). DPPH radical scavenging and SOD-like activities of PBE were remarkably increased in a dose-dependent manner, and were about 88.9% and 47.9% at 1 mg/ml and 10 mg/ml, respectively. The xanthine oxidase and angiotensin converting enzyme activities were inhibited about 71.9% and 60.8% at 1 mg/ml and $100{\mu}g/ml$ of PBE, respectively. The tyrosinase inhibitory activities of PBE were slightly increased in a dose-dependent manner. The PBE showed strong antimicrobial activities on Escherichia coli (E. coli) and Vibrio paraheamolyticus. Stimulation of the macrophages RAW264.7 cells with lipopolysaccharide (LPS) resulted in increased production of nitric oxide (NO) in the medium. However, NO synthesis was reduced up to 54% by addition of PBE at $200{\mu}g/ml$. These results revealed that pine buds have a strong antioxidative and anti-inflammatory activity, and exhibit angiotensin converting enzyme and xanthine oxidase inhibitory activities. This suggests that pine buds have the greatest property as a source for natural health products.

Skin Whitening Effect of Ethyl Acetate Fraction of Adenophora triphylla var. japonica Sprout (잔대(Adenophora triphylla var. japonica)순 아세트산에틸 분획물의 피부 미백 효과)

  • Yoo, Seul Ki;Park, Seon Kyeong;Kang, Jin Yong;Kim, Jong Min;Park, Sang Hyun;Kwon, Bong Seok;Lee, Chang Jun;Kang, Jeong Eun;Park, Su Bin;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Plant Resources
    • /
    • v.30 no.4
    • /
    • pp.352-363
    • /
    • 2017
  • To investigate skin-whitening effect of Adenophora triphylla var. japonica sprout extract, antioxidant activity, inhibitory effect on tyrosinase and melanin synthesis in B16/F10 melanoma cell were examined. Total phenolic content (246.25 mg GAE/g) and total flavonoid content (303.94 mg RE/g) of ethyl acetate fraction from Adenophora triphylla sprout (EFAT) showed the highest contents than other fractions (n-hexane, chloroform and distilled water). Antioxidant activities of EFAT has been evaluated using ABTS, DPPH radical scavenging activities, FRAP and inhibitory effect of lipid peroxidation. EFAT showed excellent radical scavenging activity and inhibitory effect on MDA production. Inhibitory effect of tyrosinase as a major enzyme of melanin synthesis was also measured. In these results, EFAT showed higher inhibitory effect against L-DOPA (51.27%) than L-tyrosine. $IC_{50}$ value on ${\alpha}-glucosidase$ was $41.93{\mu}g/ml$. In B16/F10 melanoma cells, EFAT inhibited melanin synthesis at $200{\mu}g/ml$ concentration (about 42% decrease). Finally, main physiological compounds of EFAT were identified as a rutin and a chlorogenic acid using high performance liquid chromatography.

Effect of Fermented Ice Plant Extract on the Inhibition of Triglyceride and Cholesterol Synthesis and Tyrosinase Activity (발효 아이스플랜트(Mesembryanthemum crystallinum L.) 추출물의 triglyceride, cholesterol 합성저해 및 tyrosinase 활성억제 효과)

  • Nam, Sanghae;Kim, Seonjeong;Ko, Keunhee
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.688-696
    • /
    • 2019
  • This study investigated changes in triglyceride and cholesterol synthesis and tyrosinase activity induced by ice plant (Mesembryanthemum crystallinum L.) extract, which cannot be stored for long periods of time due to its high moisture content when it was fermented to improve its storage stability. The accumulation of triglyceride and cholesterol in HepG2 cells inhibited the accumulation with a relatively large magnitude in n-butanol and aqueous fractions that generally have high polarity, however, changes in inhibition potency due to the fermentation were not significant. As for the effect to inhibit tyrosinase activity, when L-tyrosine was used as a substrate, the inhibitory activity was the highest for the aqueous fraction at $60.58{\pm}4.03%$ and $63.35{\pm}4.35%$, before and after fermentation, respectively, which amounted to 72% of that of the positive control group (arbutin, $100{\mu}g/ml$). In addition, when L-3,4-dihydroxyphenylalanine (L-DOPA) was used as a substrate, the inhibitory activity was also found the highest for the aqueous fraction at $56.85{\pm}1.57%$ and $59.38{\pm}1.74%$, before and after fermentation, respectively, which amounted to at least 88% of that in the positive control (kojic acid, $100{\mu}g/ml$). Overall, the activity of the fermented ice plant extract was similar or a little higher compared to that of the one without fermentation, indicating that fermentation can be a good approach to improve the storage stability of the ice plant.

Inhibitory Activity of Medicinal Herbs on Nitric Oxide Synthesis in Activated Macrophages

  • Lee, Hwa-Jin;Kim, Ji-Sun;Jin, Chang-Bae;Ryu, Jae-Ha
    • Natural Product Sciences
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • Nitric Oxide (NO), derived from L-arginine, is produced by two types (constitutive and inducible) of nitric oxide synthase (NOS: cNOS and iNOS). The NO produced in large amounts by the iNOS is known to be responsible for the vasodilation and hypotension observed in septic shock, cancer metastasis and inflammation. The inhibitors of iNOS, thus, may be useful candidates for the treatment of inflammatory diseases accompanied by the overproduction of NO. We prepared alcoholic extracts of herbal drugs which have been used for the treatment of inflammation in oriental medicine. We have screened the inhibitory activity of NO production in lipopolysaccharide (LPS)-activated macrophages after the treatment of these extracts. Among 82 kinds of extracts of herbal drugs, 35 extracts showed the potent inhibitory activity of NO production above 50% at the concentration of $50\;{\mu}g/mL$. The inhibitory activities of NO production were also evaluated for several solvent fractions at two different concentrations. Especially, hexane and EtOAc fractions of Alpinia officinarum, Angelica gigas, Ostericum koreanum, Saussurea lappa, Torilis japonica, and hexane fractions of Agrimonia pilosa, Machilus thunbergii, Hydrangea serrata, Magnolia obovata, Prunella vulgaris, Tussilago farfara, and EtOAC fractions of Perilla frutescence showed a significant activity at 10 and/or $25\;{\mu}g/mL$. In Western blot analysis, the hexane fractions ($5\;{\mu}g/mL$) of Magnolia obovata and Saussurea lappa, and EtOAc fractions ($20\;{\mu}g/mL$) of Hydrangea Serrata, Perilla frutescence and Torilis japonica inhibited the expression of iNOS protein in LPS-activated macrophages. These plants may be promising candidates for the study of the activity-guided purification of active compounds and might be useful for the treatment of inflammatory diseases and endotoxemia accompanying overproduction of NO.

Synthesis of Microspheric Silicone Polymer Beads by UV Irradiation and Alkoxy Hydrolysis (UV 조사와 Alkoxy 가수분해 법을 이용한 구형 실리콘 마이크로 고분자 비드의 합성)

  • Park, Seung-Wook;Kim, Jung-Joo;Hwang, Eui-Hwan;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.377-384
    • /
    • 2008
  • In this study, the microsphere silicone polymer beads were synthesized by UV irradiation and alkoxy hydrolysis. The coefficient of variation (CV) of microsphere silicone polymer beads were decreased with increasing UV intensity, reaction time. The mean particle diameter, refractive index, and pH value were $4.1{\mu}m$, 1.43 and 7.5, respectively. Also, the true and bulk specific gravity, moisture content were 1.30, and 0.40, below 2%. The mean particle diameter and CV were the lowest at 0.1 wt% hexamethyldisilazane (HMDS) and their roundnesses were $0.95{\sim}0.98{\mu}m$ values. The particle dispersion index of microsphere silicone polymer beads was 4.92 at 450 W, 90 min and the yield was increased to 11.3% at 20 wt% methyltrimethoxysilane (MTMS). The mean particle diameter was decreased with increasing the stirring rate and reaction temperature.

Synthesis and Characterization of Dinuclear Mo(Ⅲ) and V(Ⅲ) Complexes (Ⅴ) (몰리브덴(Ⅲ)과 바나듐(Ⅲ) 이핵 착물의 합성과 특성 (제5보))

  • Oh, Sang-Oh;Lyou, Eun-Young
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.530-537
    • /
    • 1995
  • The neutral complexes $MCl_3(phda)(MeCN)]$ and $[MCl_3(PPh_3)_2(MeCN)]$ (M=Mo, V) were prepared by the reaction of $MCl_z$, (M=Mo; z=5, M=V; z=3) with N, P-donating ligands in acetonitrile solution. Addition of AgClO_4$ to these neutral monomeric complexes in acetone solution afforded $MCl_{3-n}L_2(MeCN)(S)_n](ClO_4)_n$ (n=1, 2 : s=solvent). Two types of asymmetrical homo- and hetero-dinuclear complexes have been synthesized. The type of chloride bridged dinuclear complex is $[(MeCN)(phda)ClM({\mu}-Cl)_2M'Cl(PPh_3)_2(MeCN)](ClO_4)_2.$ And the type of pyrazine bridged complex is $[(MeCN)(phda)Cl_2M({\mu}-pyz)M'Cl_2(PPh_3)_2(MeCN)](ClO_4)_2.$ These complexes were characterized by elemental analysis, $^1H,\;^13C$ NMR, IR, Far-IR and UV-Vis spectroscopy.

  • PDF

Synthesis and Biological Evaluation of Heterocyclic Ring-substituted Chalcone Derivatives as Novel Inhibitors of Protein Tyrosine Phosphatase 1B

  • Chen, Zhen-Hua;Sun, Liang-Peng;Zhang, Wei;Shen, Qiang;Gao, Li-Xin;Li, Jia;Piao, Hu-Ri
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1505-1508
    • /
    • 2012
  • Protein tyrosine phosphatase 1B (PTP1B) is a key factor in negative regulation of the insulin pathway, and is a promising target for the treatment of type-II diabetes, obesity and cancer. Herein, compound ($\mathbf{4}$) was first observed to have moderate inhibitory activity against PTP1B with an $IC_{50}$ value of $13.72{\pm}1.53{\mu}M$. To obtain more potent PTP1B inhibitors, we synthesized a series of chalcone derivatives using compound ($\mathbf{4}$) as the lead compound. Compound $\mathbf{4l}$ ($IC_{50}=3.12{\pm}0.18{\mu}M$) was 4.4-fold more potent than the lead compound $\mathbf{4}$ ($IC_{50}=13.72{\pm}1.53{\mu}M$), and more potent than the positive control, ursolic acid ($IC_{50}=3.40{\pm}0.21{\mu}M$). These results may help to provide suitable drug-like lead compounds for the design of inhibitors of PTP1B as well as other PTPs.

Synthesis and Characterization of Homo-, Hetero-Dinuclear Mo(Ⅲ) and V(Ⅲ) Complexes (Ⅳ) (몰리브덴(Ⅲ) 과 바나듐(Ⅲ) 호모 및 헤테로 이핵 착물의 합성과 특성 (제 4 보))

  • O, Sang O;Yu, Eun Yeong
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.11
    • /
    • pp.808-818
    • /
    • 1994
  • The neutral compounds [$MCl_3L_2$(MeCN)] (M = Mo, V: L = $PPh_3$, 1/2 phda) have been prepared from the reaction of starting material $MCl_z$ (M = Mo; z = 5, M = V; z = 3) with N,P-donating ligands in acetonitrile solution. Addition of $AgClO_4$ to these neutral monomeric compounds in acetone solution were produced [$MCl_3-_nL_2(MeCN)(S)_n$]$(ClO_4)_n$ (n = 1, 2 : s = solvent). Finally treatment of bivalent cationic compound and neutral compound was formed chloride bridged dinuclear complex $[(MeCN)(L)_2ClM({\mu}-Cl)_2M'Cl(L)_2(MeCN)](ClO_4)_2$ and treatment of univalent cationic compound with half equivalent pyrazine to pyrazine bridged complex $[(MeCN)(L)_2Cl_2M({\mu}-pyz)M'Cl_2(L)_2(MeCN)](ClO_4)_2$. These complexes are characterized by elemental analysis, $^1H$, $^{13}C$ NMR, IR, Far-IR and UV-Vis spectroscopy.

  • PDF

Purification and Characterization of Two Extracellular Glucoamylase Isozymes from Lipomyces kononenkoae CBS 5608 Mutant

  • Chun, Soon-Bai;Bai, Suk;Im, Suhn-Young;Choi, Won-Ki;Lee, Jin-Jong
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.375-381
    • /
    • 1995
  • Two forms of glucoamylase (GI and GII) from starch-grown Lipomyces kononenkoae CBS 5608 mutant were purified to apparent homogeneity by means of ultrafiltration, Sephacryl S-200 gel filtration and DEAE Sephadex A-50 chromatography. The apparent molecular weight was calculated as ca. 150 kDa for GI and ca. 128 kDa for GII, respectively. Both enzymes were glycoproteins with isoelectric points of 5.6 (GI) and 5.4 (GII). They had a pH optimun of 4.5 and were stable from pH 5 to 8. The temperature optimum for both enzymes was $60^{\circ}C$, but they were rapidly inactivated above $70^{\circ}C$. The $K_m$ values toward starch were estimated to be 6.57 mg per ml for GI and 4.52 mg per ml for GII, and the $V_{max}$ values were 16.28 ${\mu}M$ per mg for GI and 32.25 ${\mu}M$ per mg for GII, respectively. The $K_m$ and $V_{max}$ values of GII for ${\alpha}-$ or ${\beta}-cyclodextrin$ were estimated to be 0.15 mg per ml and 2.0 mg per ml, respectively ($K_m$) and 1.02 ${\mu}M$ per mg or 1.02 ${\mu}M$ per mg, respectively ($V_{max}$). Neither enzyme exhibited pullulanase activity but they released only glucose from starch or cyclodextrin. Amino acid analysis indicated that both glucoamylases were enriched in proline and acid amino acids. Glucoamylase GII strongly cross-reacted with a monoclonal antibody raised against GI enzymes, and the two enzymes shared very similar amino acid composition. Western blot analysis indicated that L. kononenkoae CBS 5608 mutant produced two forms of glucoamylase on starch, and that synthesis of them was subject to glucose repression.

  • PDF