The HyperGam program was developed for the analysis of complex HPGe ${\gamma}$-ray spectra. The previous version of HyperGam was mainly limited to the analysis of ${\gamma}$-ray peaks and the manual logging of the result. In this study, it is specifically developed into a tool for the isotopic analysis of spectra. The newly developed features include nuclide identification and activity determination. An algorithm for nuclide identification was developed to identify the peaks in the spectrum by considering the yield, efficiency, energy and peak area for the ${\gamma}$-ray lines emitted from the radionuclide. The detailed performance of nuclide identification and activity determination was accessed using the IAEA 2002 set of test spectra. By analyzing the test spectra, the numbers of radionuclides identified truly (true hit), falsely (false hit) or missed (misses) were counted and compared with the results from the IAEA 2002 tests. The determined activities of the radionuclides were also compared for four test spectra of several samples. The result of the performance test is promising in comparison with those of the well-known software packages for ${\gamma}$-ray spectrum analysis.
Radiation measurement technology has steadily improved and its usage is expanding in various industries such as nuclear medicine, security search, satellite, nondestructive testing, environmental industries and the domain of nuclear power plants (NPPs). Especially, the simultaneous measurements of gamma rays and neutrons can be even more critical for nuclear safety management of spent nuclear fuel and monitoring of the nuclear material. A semiconductor detector comprising cadmium, zinc, and tellurium (CZT) enables to detect gamma-rays due to the significant atomic weight of the elements via immediate neutron and gamma-ray detection. Semiconductor sensors might be used for nuclear safety management by monitoring nuclear materials and spent nuclear fuel with high spatial resolution as well as providing real-time measurements. We aim to introduce a portable nuclide-analysis device that enables the simultaneous measurements of neutrons and gamma rays using a CZT sensor. The detector has a high density and wide energy band gap, and thus exhibits highly sensitive physical characteristics and characteristics are required for performing neutron and gamma-ray detection. Portable nuclide-analysis device is used on NPP-decommissioning sites or the purpose of nuclear nonproliferation, it will rapidly detect the nuclear material and provide radioactive-material information. Eventually, portable nuclide-analysis device can reduce measurement time and economic costs by providing a basis for rational decision making.
본 논문에서는 고감도 보급형 핵종 분석 모듈 개발을 제안한다. 제안하는 측정센서 모듈은 핵종 분석 분해능을 위한 전자부 구동회로, 핵종 분석 기능이 적용된 시제품 제작, 시제품에 적용되는 GUI 개발 등으로 구성된다. 핵종 분석 분해능을 위한 전자부 구동회로는 전자부 구동 회로 블록도에 의한 핵종 분석 분해능 과정, 방사선 측정에 사용되는 MCU 회로 설계, Spectrum 취득용 PC 프로그램 설계 등으로 나뉘어진다. 핵종 분석 기능이 적용된 시제품 제작은 128×128 픽셀의 OLED display, 조작을 위한 3개의 버튼, Li-ion 배터리, 배터리 충전을 위한 USB-C Type 포트의 구성을 추가하여 제작한다. 시제품에 적용되는 GUI 개발부는 현재시간, 측정 경과 시간, 토탈 카운트, 핵종 Spectrum 등의 화면구성으로 개발한다. 제안된 측정센서 모듈의 성능을 평가하기 위하여 공인기관 전문가 입회시험을 시행한 결과, 핵종 분석 장치에 Cs-137 표준선원을 이용하여 취득한 Spectrum(FWHM@662keV)으로 분해능 공식을 적용하여 계산한 결과가 17.77%의 분해능을 가짐이 확인되었다. 따라서, 제안된 본 논문에서 제안한 핵종 분석 분해능 방법이 기존의 상용의 핵종 분석 모듈보다 저렴하면서도 향상된 성능이 산출됨이 확인되었다.
The spent nuclear fuel is burned during the planned cycle in the plant and then generates elements such as actinide series, fission products, and plutonium with a long half-life. An 'interim storage' step is needed to manage the high radioactivity and heat emitted by nuclides until permanent-disposal. In the case of Korea, there is no space to dispose of high-level radioactive waste after use, so there is a need for a period of time using interim storage. Therefore, the intensity of neutrons and gamma-ray must be determined to ensure the integrity of spent nuclear fuel during interim storage. In particular, the most important thing in spent nuclear fuel is burnup evaluation, estimation of the source term of neutrons and gamma-ray is regarded as a reference measurement of the burnup evaluation. In this study, an analysis of spent nuclear fuel was conducted by setting up a virtual fuel burnup case based on CE16×16 fuel to check the total amount and spectrum of neutron, gamma radiation produced. The correlation between BU (burnup), IE (enrichment), and CT (cooling time) will be identified through spent nuclear fuel burnup calculation. In addition, the composition of nuclide inventory, actinide and fission products can be identified.
A tiny dust found at the balcony of the Institute indicated about 8,0000 counts per minute by T.G.C.-2 Geiger-Muller tube (1.8mg/$cm^2$ window-thickness) at the distance of 2cm from the window. The main fission fragments, as identified by the present analysis, are 12.5day Ba-140 and 33.1 day Ce-141. The gamma energies were determined using $2"{\times}2"$ NaI(Tl) scintillation detector connected to RCL-256 channel pulse heigt analyzer. The beta energies were evaluated by Feather plot.
Background: To prevent small leakage accidents, a real-time and direct detection system for small leaks with a detection limit below that of existing systems, e.g. $0.5gpm{\cdot}hr^{-1}$, is required. In this study, a small-size beta detector, which can be installed inside the reactor containment (CT) building and detect small leaks directly, was suggested and its feasibility was evaluated using MCNPX simulation. Materials and Methods: A target nuclide was selected through analysis of radiation from radionuclides in the reactor coolant system (RCS) and the spectrum was obtained via a silicon detector simulated in MCNPX. A window was designed to reduce the background signal caused by other nuclides. The sensitivity of the detector was also estimated, and its shielding designed for installation inside the reactor CT. Results and Discussion: The beta and gamma spectrum of the silicon detector showed a negligible gamma signal but it also contained an undesired peak at 0.22 MeV due to other nuclides, not the $^{16}N$ target nuclide. Window to remove the peak was derived as 0.4 mm for beryllium. The sensitivity of silicon beta detector with a beryllium window of 1.7 mm thickness was derived as $5.172{\times}10^{-6}{\mu}Ci{\cdot}cc^{-1}$. In addition, the specification of the shielding was evaluated through simulations, and the results showed that the integrity of the silicon detector can be maintained with lead shielding of 3 cm (<15 kg). This is a very small amount compared to the specifications of the lead shielding (600 kg) required for installation of $^{16}N$ gamma detector in inside reactor CT, it was determined that beta detector would have a distinct advantage in terms of miniaturization. Conclusion: The feasibility of the beta detector was evaluated for installation inside the reactor CT to detect small leaks below $0.5gpm{\cdot}hr^{-1}$. In future, the design will be optimized on specific data.
검출한계에 대한 기본개념을 기초로 백그라운드 측정시간과 시료측정시간을 고려하였고, 환경시료중에서 육상시료(하천토, 표층토양, 식수, 지하수, 지표수, 솔잎, 쑥) 분석에서 백그라운드 계측시간과 시료 측정시간의 변화에 따른 MDA 값들을 비교하였다. 물시료 분석결과를 살펴보면 대부분 시료에서 불검출로 나타났으며, 육상시료 분석결과 대부분의 시료에서 "과학기술부고시 제 2008-28호"의 검출하한치 미만으로 측정되었으나, 일부 시료에서는 인공방사성핵종인 $^{137}Cs$이 검출되었다. 이는 과거 50.60년대 행해졌던 대기권 핵실험에 의한 낙진 및 소련의 체르노빌 원전사고 등에 의한 영향으로 우리나라뿐만 아니라 전 세계적으로 검출되고 있는 수준이다. 또한 $^{137}Cs$의 동위원소이며, 상대적으로 반감기가 짧은 $^{134}Cs$가 모든 시료에 대해서 검출되지 않는 것으로 보아 원전운영에 의한 영향이 아님을 알 수 있다.
order to investigate physical characteristics and element concentrations of sediments, coastal bottom sediments were collected at 20 stations in the vicinity of Youngkwang Nuclear Power Plant. After air drying of samples in the laboratory. article size distribution was examined by Master sizer (X-350F), radio-activity by HPGe ${\gamma}$-spectrphotometer, and element concentrations by ICP-AES and AAS. According to particle size analysis , sediments are mainly composed of silt fraction weith 23% of sand, 65% of silt and 12% of clay on average. Most sediments are derived from muddy environment that silt dominates with the characteristics of 5.3${\varsigma}$ mean particle size, poorly sorted, very fine skewed and lepto-kurtic. Only two sediments are well sorted with sandy silt owing to wind, winnowing action, tide and current andits complex reactions. Element concentrations in the coastal bottom sediments are relatively high at finer sediment and show significant relationship with grain size. Index of geoaccumulation by heavy metals at every sampling station is classified as practically unpolluted. The radioactivities of the sediments were measured for 15 isotope elements, and 2 elements of K-40 and Cs-137 were detected in most sediments. The K-40 is the natural nuclide and the artificial nuclide of Cs-137 was thought to be derived from the fallout of past nuclear weapon test. The results of correlation coefficient between grain size and radioactivity shows that the activity of Cs-137 significantly increases in finer grain.
양성자가속기연구센터(KOMAC)의 100-MeV 양성자 선형가속기에서 생성된 고에너지 양성자를 사용하여 천연 텅스텐과 핵반응을 일으켰다. 핵반응을 통해 생성된 다양한 핵종으로 부터의 감마선은 HPGe 검출기 감마선 분광시스템을 사용하여 측정하였다. 감마선 표준선원은 에너지 교정 및 검출기의 효율 측정에 사용되었다. 측정된 스펙트럼에서 관찰된 감마선을 분석한 결과 방사성 핵종은 $^{167}Re$, $^{178}Re$, $^{179}Re$, $^{180}Re$, $^{181}Re$, $^{182}Re$, $^{184}Re$, $^{172}Ta$, $^{174}Ta$, $^{178}Ta$, $^{182}Ta$, $^{184}Ta$, $^{175}W$, $^{176}W$, $^{177}W$ 및 $^{179}W$ 으로 총 16 종류의 핵종이 생성되었다. 이 연구의 결과는 미래의 핵융합, 천체 물리학 및 핵의학 응용 분야에 적용될 것으로 생각된다.
토양 시료 중에 극미량의 $^{134}Cs$ 방사능 농도는 지각 기원자연방사성 핵종들에 의한 background의 영향 및 피크간의 중첩 및 간섭으로 구분하기가 어렵다. 감마선 분광학에서 참 피크의 식별은 피크의 모양이 대체로 Gaussian임을 고려하여 smoothing에 의해 통계적 요동을 감소시켜 보거나 피크의 폭이나 솟아오름의 정도를 검사하거나, 저에너지 tailing 현상에 대한 함수를 추가하거나 Gaussian 함수자체를 변형시켜 확인 할 수 있었다. 그러므로 스펙트럼 분석에 대한 정보와 지식이 필요할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.