• 제목/요약/키워드: ${\gamma}$-phase

검색결과 685건 처리시간 0.024초

6Bi2O3.GeO2 조성 융액의 결정화 (Crystallization from The Melt of 6Bi2O3.GeO2 Composition)

  • 김호건;김명섭
    • 한국세라믹학회지
    • /
    • 제26권4호
    • /
    • pp.479-486
    • /
    • 1989
  • According to the phase diagram, 6Bi2O3.GeO2 composition melts congruently at 93$0^{\circ}C$ and forms a stable ${\gamma}$-6Bi2O3.GeO2 crystal phase below the melting point. But when the melt of this composition was cooled at a rate 1-15$0^{\circ}C$/min without tapping by a glass rod or impurity addition, a metastable $\delta$-6Bi2O3.GeO2 crystal phase was formed. It is due to that as the nucleation energy barrier of $\delta$-6Bi2O3.GeO2 crystals, which have more open and defective structure, is lower than that of ${\gamma}$-6Bi2O3.GeO2 crystals. When impurities or ${\gamma}$-6Bi2O3.GeO2 crystals existed in the melt, stable ${\gamma}$-6Bi2O3.GeO2 crystal phase was formed at various cooling rate. It is because of that the impurities or the ${\gamma}$-6Bi2O3.GeO2 crystals role as a seed crystal and as a result the nucleation energy barrier of ${\gamma}$-6Bi2O3.GeO2 crystals is lowered.

  • PDF

Dependence of an Interfacial Diels-Alder Reaction Kinetics on the Density of the Immobilized Dienophile: An Example of Phase-Separation

  • Min, Kyoung-Mi;Jung, Deok-Ho;Chae, Su-In;Kwon, Young-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1679-1684
    • /
    • 2011
  • Interfacial reactions kinetics often differ from kinetics of bulk reactions. Here, we describe how the density change of an immobilized reactant influences the kinetics of interfacial reactions. Self-assembled monolayers (SAMs) of alkanethiolates on gold were used as a model interface and the Diels-Alder reaction between immobilized quinones and soluble cyclopentadiene was used as a model reaction. The kinetic behavior was studied using varying concentrations of quinones. An unusual threshold density of quinones (${\Gamma}_c$ = 5.2-7.2%), at which the pseudo-first order rate constant started to vary as the reaction progressed, was observed. This unexpected kinetic behavior was attributed to the phase-separation phenomena of multi-component SAMs. Additional experiments using more phase-separated two-component SAMs supported this explanation by revealing a significant decrease in ${\Gamma}_c$ values. When the background hydroxyl group was replaced with carboxylic or phosphoric acid groups, ${\Gamma}_c$ was observed at below 1%. Also, more phase-separated thermodynamically controlled SAMs produced a lower critical density (3% < ${\Gamma}_c$ < 4.9%) than that of the less phaseseparated kinetically controlled SAMs (6.5% < ${\Gamma}_c$ < 8.9%).

화학센서용 다공성 ${\gamma}-Fe_2O_3$ 박막 제조 (Fabrication of ${\gamma}-Fe_2O_3$ Thin Film for Chemical Sensor Application)

  • 김범진;임일성;장건익
    • 센서학회지
    • /
    • 제8권2호
    • /
    • pp.171-176
    • /
    • 1999
  • PECVD법을 이용하여 $Al_2O_3$ 기판위에 증착된 $Fe_3O_4$박막의 상전이를 통하여 ${\gamma}-Fe_2O_3$ 박막을 제조하였다. ${\gamma}-Fe_2O_3$ 박막의 상전이는 주로 증착온도와 $Fe_3O_4$의 산화과정에 의해 유도되었다. $Fe_3O_4$ 상은 $200{\sim}300^{\circ}C$의 증착온도에서 in-situ로 얻을 수 있었다. 증착온도에 따른 상변화는 없었으며 $250^{\circ}C$에서 증착된 $Fe_3O_4$상이 가장 안정된 상을 나타내었다. ${\gamma}-Fe_3O_3$ 상은 $280{\sim}300^{\circ}C$의 온도범위에서 $Fe_3O_3$ 상을 산화시켜 유도하였다. $Fe_3O_4$ 상과 ${\gamma}-Fe_2O_3$ 상은 같은 spinel구조를 가지고 있으며 공존상으로서 존재함을 알 수 있었다. 또한, $Al_2O_3$에 산화된 ${\gamma}-Fe_2O_3$ 박막은 다공성의 미세구조를 나타내었다.

  • PDF

산성 염화물 환경에서 F53 슈퍼 듀플렉스 스테인리스강의 2 상간의 공식 거동 연구 (Investigation of the pitting corrosion behavior between the constituent phases in F53 super duplex stainless steel in acidified chloride environments)

  • 김순태;공경호;이인성;박용수;이종훈;김두현
    • Corrosion Science and Technology
    • /
    • 제13권3호
    • /
    • pp.95-101
    • /
    • 2014
  • The pitting corrosion behaviors between the constituent phases in F53 super duplex stainless steel (SDSS) in acidified chloride environments were investigated using a critical pitting corrosion temperature test, a potentiodynamic anodic polarization test, and the microstructure analyses through a SEM-EDS and a SAM. As the solution annealing temperature decreased from $1150^{\circ}C$ to $1050^{\circ}C$, the ${\gamma}$-phase fraction increased whereas the ${\alpha}$-phase fraction decreased. The pitting potential and the critical pitting temperature increased with a decrease of solution annealing temperature, thereby increasing the resistance to pitting corrosion. The pitting corrosion of the SDSS was selectively initiated at the ${\alpha}$-phases because the PREN (pitting resistance equivalent number, PREN = %Cr+3.3%Mo+30%N) value of the ${\gamma}$-phase is much larger than that of the ${\alpha}$-phase, irrespective of the solution annealing temperature. The pitting corrosion was finally propagated from the ${\alpha}$-phase to the ${\gamma}$-phase. The decrease of solution annealing temperature enhanced the resistance to pitting corrosion greatly in acidified chloride environments due to a decrease of PREN difference between the ${\gamma}$-phase and the ${\alpha}$-phase, that is, a decrease of $PREN{\gamma}$ by dilution of N in ${\gamma}$-phase with an increase in the ${\gamma}$-phase volume fraction and an increase of $PREN{\alpha}$ by enrichment of Cr and Mo in the ${\alpha}$-phase with a decrease in the ${\alpha}$-phase volume fraction.

치과용 아말감의 파절에 관한 연구 (A STUDY ON THE FRACTURE OF DENTAL AMALGAM)

  • 허현도;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제9권1호
    • /
    • pp.101-106
    • /
    • 1983
  • It was the purpose of this study to investigate the fracture mode of dental amalgam by observing the crack propagation, and to relate this to the microstructure of the amalgam. Caulk 20th Century Regular, Caulk Spherical, Dispersalloy, and Tytin amalgam alloys were used for this study. After each amalgam alloy and Hg measured exactly by the balance was triturated by the mechanical amalgamator (Capmaster, S.S. White), the triturated mass was inserted into the cylindrical metal mold which was 4 mm in diameter and 12 mm in height and was pressed by the Instron Universal Testing Machine at the speed of 1mm/min with 120Kg. The specimen removed from the mold was stored in the room temperature for a week. This specimen was polished with the emery papers from #100 to #200 and finally on the polishing cloth with 0.06${\mu}Al_2O_3$ powder suspended in water. The specimen was placed on the Instron testing machine in the method similar to the diametral tensile test and loaded at the crosshead speed of 0.05mm/min. The load was stopped short of fracture. The cracks on the polished surface of specimen was examined with scanning electron microscope (JSM-35) and analyzed by EPMA (Electron probe microanalyzer). The following results were obtained. 1. In low copper lathe-cut amalgam, the crack went through the voids and ${\gamma}_2$ phase, through the ${\gamma}_1$ phase around the ${\gamma}$ particles. 2. In low copper spherical amalgam, it was observed that the crack passed through the ${\gamma}_2$ and ${\gamma}_1$ phase, and through the boundary between the ${\gamma}_1$ and ${\gamma}$ phase. 3. In high copper dispersant (Dispersalloy) amalgam, the crack was found to propagate at the interface between the ${\gamma}_1$ matrix and reaction ring around the dispersant (Ag-Cu) particles, and to pass through the Ag-Sn particles. 4. In high copper single composition (Tytin) amalgam, the crack went through the ${\gamma}_1$ matrix between ${\eta}$ crystals, and through the unreacted alloy particle (core).

  • PDF

일방향응고된 NiAl/$Ni_3Al$ 2상합금의 방향성 측정 및 기계적 특성 평가 (Orientation Measurement and Related Mechanical Properties of Directionally Solidified NiAl/$Ni_3Al$ Two-Phase Alloys)

  • 이혜정;박노진;최환;이재현;오명훈
    • 열처리공학회지
    • /
    • 제23권2호
    • /
    • pp.96-103
    • /
    • 2010
  • $Ni_3Al$ is known as a good high temperature structural material because of high yield strength at ambient temperature. However, it is too brittle to use as a structural material because of their weak grain boundary. In this work, orientation measurement and related mechanical properties of directionally solidified NiAl/$Ni_3Al$ two-phase alloys with various compositions (Ni-23~27 at.%Al) were investigated for developing multi-phase DS-processed alloys with the growth rates of 10, 50 and 100 ${\mu}m/s$ in a modified Bridgeman type furnace. It was found that the multi-phase microstructures such as the $\gamma$ dendrite +${\gamma}'$ matrix duplex microstructure was formed in the hypoeutectic composition of 23 at.%Al, $\beta$ dendrite +${\gamma}'$ matrix duplex microstructure in the hypereutectic composition of 26 and 27 at.%Al. And ${\gamma}'$ single phase was formed in the composition of 24.5 and 25 at.%Al. The hypoeutectic alloy including $\gamma$ dendrites with ${\gamma}'$ matrix showed a large elongation of over 70% at room temperature. However, the room-temperature tensile elongation decreased with increasing Al contents because the volume fraction of brittle $\beta$ dendrites in the ductile ${\gamma}'$ matrix increased.

일방향 응고된 Cu-Al-Ni 합금의 변태특성에 미치는 열처리 영향 (Influence of Heat Treatment on Transformation Characteristics in an Unidirectionally Solidified Cu-Al-Ni Alloy)

  • 박윤규;장우양
    • 열처리공학회지
    • /
    • 제16권2호
    • /
    • pp.90-96
    • /
    • 2003
  • The effect of betatizing temperature on microstructure and transformation characteristics in a Cu-AI-Ni based pseudoelastic alloy fabricated by heated mold continuous casting by using metallography, XRD and calorimetry. The microstructure of cast rod betatized at $600^{\circ}C$ revealed a ${\beta}_1$ parent phase and a ${\gamma}_2$ phase precipitated along the casting direction. When the cast rod was betatized at the elevated temperature above $600^{\circ}C$, the ${\gamma}_2$ phase is completely dissolved into the matrix so that the volume fraction of the ${\gamma}_2$ phase was decreased. The parent phase was stabilized by betatizing at $600^{\circ}C$. However, the ${\beta}_1$ parent phase was transformed to both ${{\beta}_1}^{\prime}$ and ${{\gamma}_1}^{\prime}$ martensites with increasing betatizing temperatures above $600^{\circ}C$, while $M_s$ and $A_s$ temperatures were decreased. The stress-strain curves for compression test were not same with betatizing temperature; the stress-strain curves of the specimen betatized at $600^{\circ}C$ and $700^{\circ}C$ were linear but those of the specimen betatized at $800^{\circ}C$ and $900^{\circ}C$ were not linear.

수퍼 2상 스테인리스강의 열처리 조건변화에 따른 첨가원소 질소의 거동 (Behavior of Nitrogen in the Variation of Heat Treatment Conditions of Super Duplex Stainless Steel)

  • 주동원;성장현
    • 열처리공학회지
    • /
    • 제10권1호
    • /
    • pp.30-39
    • /
    • 1997
  • After changing the heat treating atmosphere of nitrogen gas, argon gas and vacuum, the nitrogen contents, microstructural changes, hardness and corrosion resistance of 0.25wt.%N alloyed super duplex stainless steel have been investigated in the temperature range from $1050^{\circ}C$ to $1350^{\circ}C$. The nitrogen content showed to be increased up to 0.36wt.% after heat treating the specimen in nitrogen gas at $1200^{\circ}C$, while the decrement of nitrogen content in vacuum atmosphere was shown down to 0.03wt.% at $1350^{\circ}C$. After heat treating in the mixed gas atmosphere of argon and nitrogen at $1250^{\circ}C$, the surface ${\gamma}$ phase existed as ${\alpha}+{\gamma}$ phase increased with increasing nitrogen gas content. The ${\gamma}$ single phase appeared at the surface above $80%N_2$ gas, while the surface ${\alpha}$ single phase was shown below $20%N_2$ gas. When heat treating the specimen in nitrogen gas at $1050^{\circ}C$, the hardness of austenite phases increased above Hv 40 at the surface layer compared to the hardness of the core parts, while decrement of denitriding effect caused to the hardness nearly unchanged between surface and the core parts after heat treating in vacuum atmosphere. The surface ${\gamma}$ single phase specimen showed superior corrosion resistance than the surface ${\alpha}$ single phase specimen. The surface ${\alpha}$ phase existed in the ${\alpha}+{\gamma}$ microstructure showed higher corrosion resistance after heat treating in the nitrogen gas atmosphere than the ${\alpha}$ phase heat treated in the argon gas and vacuum atmosphere.

  • PDF

Studying the operation of MOSFET RC-phase shift oscillator under different environmental conditions

  • Ibrahim, Reiham O.;Abd El-Azeem, S.M.;El-Ghanam, S.M.;Soliman, F.A.S.
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1764-1770
    • /
    • 2020
  • The present work was mainly concerned with studying the operation of RC-phase shift oscillator based on MOSFET type 2N6660 under the influence of different temperature levels ranging from room temperature (25 ℃) up-to135 ℃ and gamma-irradiation up-to 3.5 kGy. In this concern, both the static (I-V) characteristic curves of MOSFET devices and the output signal of the proposed oscillator were recorded under ascending levels of both temperature and gamma-irradiation. From which, it is clearly shown that the drain current was decreased from 0.22 A, measured at 25 ℃, down to 0.163 A, at 135 ℃. On the other hand, its value was increased up-to 0.49 A, whenever the device was exposed to gamma-rays dose of 3.5 kGy. Considering RC-phase shift oscillator, the oscillation frequency and output pk-pk voltage were decreased whenever MOSFET device exposed to gamma radiation by ratio 54.9 and 91%, respectively. While, whenever MOSFET device exposed to temperature the previously mentioned parameters were shown to be decreased by ratio 2.07 and 46.2%.

고 망간강 2상 혼합조직의 열적 안정성에 관한 연구 (A Study on the Thermal Stability of Duplex High Mn-Steel Structure)

  • 위명용
    • 열처리공학회지
    • /
    • 제5권1호
    • /
    • pp.13-22
    • /
    • 1992
  • The thermal stability of duplex high Mn-steel structure have been investigated using 15%Mn~1.0~2.4%C steels which are composed of ${\gamma}$-and ${\theta}$-phases in the range of temperature from 900 to $1100^{\circ}C$, and time from 50 to 300h. The results are as follows ; 1) The grain growth in single-phase region proceeds by grain boundary migration and the relation between mean radius $\bar{r}$ and annealing time t is described as follows ; $\bar{r}^2-{\bar{r}_0}^2=k_0{\cdot}t$ 2) The grain growth of duplex, (${\gamma}+{\theta}$), strucrure is slower than that single phase because the chemical composition of ${\gamma}$-and ${\theta}$-phases differs esch others. 3) The grain of (${\gamma}+{\theta}$) duplex structure grow slowly in a mode of Ostwald ripening. Because grain boundaries of ${\gamma}$-phase migrate under a restriction of pinning by ${\theta}$-phases. 4) In the duplex structures. the dispersed structures change to the dual-structures, as the volume fraction of the dispersed second-phase increase. Consequently, the growth-law, which is controlled by boundary-diffusion change to that of the volume diffusion-mechanism.

  • PDF