• Title/Summary/Keyword: ${\gamma}$-Ray radiation

Search Result 886, Processing Time 0.025 seconds

Coincidence Summing Corrections in HPGe Gamma Ray Spectrometry in Marinelli-beakers with Efficiency (효율을 적용한 마리넬리 비이커에서 HPGe 감마선 분광분석법의 동시합성보정)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.557-563
    • /
    • 2018
  • Coincidence summing correction effects are known to be greater as the efficiency of the detector increases and as the distance between the source and the detector increases. A point source($^{60}Co$) was used to vary the distance in the direction of the detector's center axis and in the radial direction to obtain the P/T ratio for Coincidence summing correction calibration. In this study, values for coincidence summing corrected calibration of the values in the central and radial directions were applied to the mixed volume source(450 ml CRM source) to compare the overall peak efficiency change according to P/T with Geant4. In addition, the efficiency obtained from the mapping method is applied to the seaweed, a marine sample, and the compatibility of the P/T ratio with the detector and sample very dose together. The efficiency corrected to 1,836 keV was applied to the energy zone affected by the efficiency of 500 keV and the relative error of the measured and corrected values was well matcched by the 3.2 % peak efficiency correction. As with 450 mL CRM source, the larger the volume, the lower the P/T ratio was by ${\pm}5%$. This is due to the increased scattering of gamma-rays emitted as the source becomes farther away from the detector, and this change in P/T has been confirmed to affect the Coincidence summing corrected peak efficiency.

Effects of Gamma-Ray and Heat Treatment on Sterilization of Escherichia coli O157:H7 (Escherichia coli O157:H7의 살균을 위한 감마선과 가열처리의 효과)

  • Kwon, Oh-Jin;Yook, Hong-Sun;Kim, Seong-Ai;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.1016-1020
    • /
    • 1997
  • Treatments of irradiation alone and/or in combination with heat were investigated for the sterilization of Escherichia coli O157: H7. D values of the strain were 129.2 min at $50^{\circ}C$, 27.1 min at $55^{\circ}C$, and 2.4 min at $60^{\circ}C$. The survival effect of E. coli O157:H7 during heating at various media was investigated. On heating at temperature of $60^{\circ}C$ for 10 min, the strain was generally more resistant in the media containg such chemical substrates such as 0.03 M cysteine, 1% sodium citrate or 5% sucrose, whereas this strain was appeared weaker in the chemical substrates added group such as 1% meat extract, 1% casein or 1% casamino acid. In the case of irradiation alone, $D_{10}$ value of E. coli O157:H7 was 0.116 kGy, and inactivation factors were $17{\sim}25$ at doses of 2 to 3 kGy. Pre-and post-irradiation heating showed the same $D_{10}$ value about 0.07 kGy. And Inactivation factors were $25{\sim}41$ at doses of 2 to 3 kGy. Therefore, combination treatment with heat and irradiation significantly increased in inactivation rate by increasing radiation sensitivity of E. coli O157:H7.

  • PDF

Preliminary Study on Electron Paramagnetic Resonance(EPR) Signal Properties of Mobile Phone Components for Dose Estimation in Radiation Accident (방사선사고시 피폭선량평가를 위한 휴대전화 부품의 전자상자성공명(EPR) 특성에 대한 예비 연구)

  • Park, Byeong Ryong;Ha, Wi-Ho;Park, Sunhoo;Lee, Jin Kyeong;Lee, Seung-Sook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.194-201
    • /
    • 2015
  • We have investigated the EPR signal properties in 12 components of two mobile phones (LCD, OLED) using electron paramagnetic resonance (EPR) spectrometer in this study.EPR measurements were performed at normal atmospheric conditions using Bruker EXEXSYS-II E500 spectrometer with X-band bridge, and samples were irradiated by $^{137}Cs$ gamma-ray source. To identify the presence of radiation-induced signal (RIS), the EPR spectra of each sample were measured unirradiated and irradiated at 50 Gy. Then, dose-response curve and signal intensity variating by time after irradiation were measured. As a result, the signal intensity increased after irradiation in all samples except the USIM plastic and IC chip. Among the samples, cover glass(CG), lens, light guide plate(LGP) and diffusion sheet have shown fine linearity ($R^2$ > 0.99). Especially, the LGP had ideal characteristics for dosimetry because there were no signal in 0 Gy and high rate of increase in RIS. However, this sample showed weakness in fading. Signal intensity of LGP and Diffusion Sheet decreased by 50% within 72 hours after irradiation, while signals of Cover Glass and Lens were stably preserved during the short period of time. In order to apply rapidly EPR dosimetry using mobile phone components in large-scale radiation accidents, further studies on signal differences for same components of the different mobile phone, fading, pretreatment of samples and processing of background signal are needed. However, it will be possible to do dosimetry by dose-additive method or comparative method using unirradiated same product in small-scale accident.

Gamma Irradiation Effects on Conchospores of Porphyra Species 2. The Effects of High Gamma Irradiation on Germination and Growth of Conchospores of Two Varieties (김의 각포자에 대한 r-선의 조사효과 2. 두 품종의 각포자의 발아생장에 미치는 고선량 r-선의 조사효과)

  • KIM Joong-Rae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.52-56
    • /
    • 1985
  • For the fundamental studies of radiation breeding in edible marine algae, the biological effects on conchospores of Porphyra species by gamma-irradiation were examined. Two varieties, Keun-cham-gim (Porphyra tenera Kjell. form tamatsuensis Miura) and Saga No.5, were chosen for this study, and their conchospores after r-irradiation($5.0{\sim}20.0$ KR) were cultured for 50 days. The results obtained were summarized as follows. 1. Gamma-irradiation in less than the dose of 20KR did not affect germination of conchospores, and almost all spores grew into two cells germ in 24 hours after irradiation, but withering germs were gradually increased in number according to higher exposure within 5 days old culture. 2. High irradiation caused the induction of giant cells, abnormal useless growth of hold-fast, lumpish thalli and callus-like lumpy tissues. 3. The liberation of neutral spores from young germs and carpospores from mature thalli were observed on the frond exposed at $10{\sim}20$ KR irradiation. All spores were normal in division and its size. 4. The best irradiation effect on growth of Keun-cham-gim was observed at 10 KR dose, whose growth-rates were $140\%$ in wet weight and $108\%$ in mean frond area, but only $48\%$ was recorded in wet weight at 20 KR exposure. Saga No.5 were in contrast with Keun-cham-gim, and their most growth-rate was $400\%$ in wet weight ($258\%$ in frond area) at 10 KR irradiation and the worst was $20\%$ at the dose of 20 KR. 5. The withering phenomenon to death by treatment of gamma-ray presented substantial difference between two varieties. Survival rate compared with control in Keun-cham-gim was $70.7\%$ at 20 KR, but that in Saga No.5 recorded $47.0\%$ at same dose. 6. Synthesizing the results of high and low r-irradiation, it was suggested tat high r-irradiation in more than 5.0 KR inhibited conspicuously the growth of germs derived from conchospores, and about half of them withered at 15.0 KR dose or more.

  • PDF

Minimum Detectable Radioactivity Concentration of Atmospheric Particulate Measurement System for Nuclear Test Monitoring (핵활동 감시를 위한 대기 입자 측정시스템의 최소검출 방사능 농도 결정)

  • Kim, Jong-Soo;Yoon, Suk-Chul;Shin, Jang-Soo;Kwack, Eun-Ho;Choi, Jong-Seo
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.2
    • /
    • pp.111-117
    • /
    • 1997
  • Recently, the conclusion of Comprehensive Test Ban Treaty(CTBT) is globally constructing a network system for nuclear test monitoring. The radionuclide experts of the Conference on Disarmament recommended that the detection of nuclear debris in the atmosphere was an essential factor of nuclear test monitoring and proposed the technical requirements. Based on those requirements, atmospheric radionuclide monitoring system to detect nuclear debris generated from the nuclear explosion test was composed. The system is comprised of high volume air sampler(HVAS), filter paper presser and high purity germanium detector(HPGe). Minimum detectable concentrations(MDCs) of the key nuclides requiring in CTBT monitoring strategies are determined by considering of decay time, counting time and flow rate of the high volume air sampler for the rapid explosion and the optimum measurement condition. The results were selected $10{\pm}$2h, $20{\pm}$2h and $850{\pm}50m^3$/h as parameters, respectively. The relation between the natural air-borne radionuclide concentration of $^{212}Pb$ and MDC were calculated which gave effect in the Compton continuum baseline due to those nuclides in the gamma-ray spectroscopy. These results can be used as an actually tool in the CTBT monitoring strategies.

  • PDF

The Analysis of radioactivity Concentration in drainage when using a radioactive Iodine (방사성옥소 사용 시 배수 중 방사능농도 분석)

  • Lee, Kyung-Jae;Sul, Jin-Hyung;Park, Young-Jae;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 2018
  • Purpose With regard to the use of radioiodine in domestic medical institution, the case of exceeding the allowance of nuclear safety Act about radioactive concentration in drainage was found. Through understanding the cause of exceeding case and analyzing radioactive concentration in drainage, evaluating the relationship of the public waters in surroundings and usefulness. Materials and Methods From November 1, 2014 to April 30th, 2015, the research is aiming at domestic twenty hospitals for six months. By using a HPGe gamma-ray spectrometer(Canberra DSA-1000) and GENIE-2000 Analysis software for comparative analysis, measuring a radioactive concentration of radioiodine in drainage. Consequently, we confirm the excess of radioactive concentration of radioiodine in seven medical institutions. Results Conducting a survey of twenty hospitals and average radioactive concentration of radioiodine in drainage appears $42,100Bq/m^3$. The features of domestic hospitals where show a high radioactive concentration are a number of medical treatment patient when using radioactive iodine and the absence of private rest room. During I-131 whole body scan, the pretreatment procedure of urinating is considered emission of residual Iodine. In public waters, the cause of exceeding detect on radioactive concentration in drainage suppose a diagnostic radioactive iodine. Conclusion We confirm the importance of enhanced education, providing a safety control instructions and installing a private rest rooms for patients who injected a low capacity radioiodine. Also, constructing institutional and legal management system is considered about the Emission management standard in drainage.

Evaluation of Radiation effective dose by Naturally Radionuclides in the Soil of Busan (부산지역 토양 내 천연방사성핵종 분석 및 유효선량율 평가)

  • Kim, Jung-Hoon;Kim, Chang-Soo;Lim, Chang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3658-3666
    • /
    • 2014
  • The presence of $^{238}U$, $^{232}Th$ and $^{40}K$, which are naturally residing radionuclides, in the ordinary soil of Busan, the 2nd largest city in Korea, was anlayzed and the residents' radiation exposure to ordinary soil was evaluated. Regarding the measurement methods, to conduct a detailed analysis of the naturally residing radionuclides in the soil of Busan, this study divided the 16 administrative districts into a lattice structure with 3 spots, and collected a total of 48 soil samples (July 2012 and April 2013). ICP-MS was used to analyze the concentration of the radioactivity of $^{238}U$ and $^{232}Th$ in the soil, and a HpGe detector, a gamma ray detector, was used to analyze the radioactivity of $^{40}K$. The measurement values of this study were compared with the concentration of radioactivity of East Asian regions. The concentration of $^{238}U$ nuclides in Korea was lower than the mean, whereas the concentration of $^{232}Th$ and $^{40}K$ nuclides was higher than the mean. The higher mean concentrations of $^{232}Th$ and $^{40}K$ than the mean were attributed to the many granite areas that contain a great deal of naturally occurring radionuclides.

Cumulative Deposition of $^{137}Cs$ in the Soil of Korea (한국토양에 존재하는 $^{137}Cs$ 방사능 분포)

  • Lee, Myung-Ho;Choi, Yong-Ho;Shin, Hyun-Sang;Kim, Sang-Bog;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.2
    • /
    • pp.97-102
    • /
    • 1998
  • The cumulative deposition of $^{137}Cs$ in the soil of Korea has been studied. Using ${\gamma$-ray spertrometry, the conrentrations of $^{137}Cs$ were determined for the soil samples collected to a depth of 20 cm. The average accumulated depositions of $^{137}Cs$ were estimated roughly to be 2,501 ${\pm}$ $m^{-2}$ in the forest and 1,058 ${\pm}$ 322 Bq $m^{-2}$ in the hill. The inventory value of $^{137}Cs$ in the forest is about two times higher than that in the hill. Except for some cases, the concentrations of $^{137}Cs$ in the undisturbed soils decreased exponentially with increasing the soil depth. The influences of rainfall, organic matter content, clay content and pH on the deposition of $^{137}Cs$ were studied using the field method. Among these factors, the organic matter content played the most important role in the retention and relative mobility of $^{137}Cs$ in the soil. The other factors such as rainfall, clay content and pH showed weak correlation with the deposition of $^{137}Cs$ in the soil.

  • PDF

Calculation of the Correction Factors related to the Diameter and Density of the Concrete Core Samples using a Monte Carlo Simulation (몬테카를로 전산해석을 이용한 콘크리트 코어시료의 직경과 밀도에 따른 보정인자 계산)

  • Lee, Kyu-Young;Kang, Bo Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete is one of the most widely used materials as the shielding structures of a nuclear facilities. It is also the most generated radioactive waste in quantity while dismantling facilities. Since the concrete captures neutrons and generates various radionuclides, radiation measurement and analysis of the sample was fulfilled prior to dismantle facilities. An HPGe detector is used in general for the radiation measurement, and effective correction factors such as geometrical correction factor, self-absorption correction, and absolute detector efficiency have to be applied to the measured data to decide exact radioactivity of the sample. Correction factors are obtained by measuring data using a standard source with the same geometry and chemical states as the sample under the same measurement conditions. However, it is very difficult to prepare standard concrete sources because concrete is limited in pretreatment due to various constituent materials and high density. In addition, the concrete sample obtained by core drill is a volumetric source, which requires geometric correction for sample diameter and self absorption correction for sample density. Therefore in recent years, many researchers are working on the calculation of effective correction factors using Monte carlo simulation instead of measuring them using a standard source. In this study we calculated, using Geant4, one of the Monte carlo codes, the correction factors for the various diameter and density of the concrete core sample at the gamma ray energy emitted from the nuclides 152Eu and 60Co, which are the most generated in radioactive concrete.

The Relative Effectiveness of Various Radiation Sources on the Resistivity Change in n-Type Silicon

  • Jung, Wun
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.91-101
    • /
    • 1969
  • Resistivity changes of n-type float-zone silicon crystals with 6.4$\times$10$^{14}$ to 1.25$\times$10$^{17}$ phosphorus atoms/㎤ due to irradiation by (1) 1 MeV electrons, (2) two types of research reactors, and (3) $Co^{60}$ ${\gamma}$-ray sources were investigated. The results were analyzed on the basis of a simple exponential formula derived by Buehler. While the formula gave a fair fit in the low fluence range in most cases, the deviation was quite appreciable in the case of 1 MeV electron irradiation, and a linear change gave better fit in some cases. The large change in the carrier removal rate in electron-irradiated samples in the high fluence range was analyzed in detail in terms of the Fermi level cross-over of the defect levels. Based on the damage constants evaluated from the initial portion of data where the formula was applicable, the relative effectiveness of various radiation sources in causing the resistivity change in n-type silicon was compared. The TRIGA Mark II reactor neutrons, for example, were found to be about 40 times more effective than 1 MeV electrons. The dependence of the damage constant on the initial carrier concentration was also examined. The physical basis of the exponential law and the effect of the Fermi level cross-over of the defect levels on the resistivity change in the high fluence ranges are discussed.

  • PDF