• Title/Summary/Keyword: ${\gamma}$-Ray radiation

Search Result 886, Processing Time 0.027 seconds

A Study on Non-proportionality of Phoswich Detector Using Monte Carlo Simulation (몬테칼로 전산모사를 이용한 Phoswich 계측기의 비선형성 연구)

  • Kim, Jae-Cheon;Kim, Jong-Kyung;Kim, Soon-Young;Kim, Yong-Kyun;Lee, Woo-Gyo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.263-268
    • /
    • 2004
  • Using the Monte Carlo simulation, a study on the lion-proportionality of the prototype phoswich detector with $2'{\times}2'$ CSI(Tl) and plastic scintillator, which was made by KAERI, has been carried. The defector response functions (DRFs) calculated by simulations were compared with the experimental measurement on the $^{137}Cs\;and\;^{60}Co$. To precisely simulate the DRF for the phoswich, the CSI(Tl) non-proportionality was calculated using the electron response and the simplified electron cascade sequence for treating the photoelectric absorption event. The resulting DRFs of $^{137}Cs\;and\;^{60}Co$ sources obtained by simulations were compared with experiments for verification. For $^{137}Cs$, gamma-ray responses simulated by MCNP5 are generally good agreement with the measured ones. But the DRF of $^{60}Co$ does not match well with the results of experiment in the energy region below second peak due to the coincidence effect of two gamma-rays (1.17 MeV and 1.33 MeV). Through the analysis of the non-proportionality of CsI(Tl) in the prototype phoswich, the improved DRFs considering non-proportionality were produced and the simulation results were verified using the experimental measurements. However, to more precisely reproduce the DRF for the phoswich, further studies in relation to the electron channeling effect and the Doppler broadening effect of a scintillator are still needed as well as considering that effect of the transfer contribution.

Dosimetric Properties of LiF:Mg,Cu,Na,Si TL pellets (LiF:Mg,Cu,Na,Si TL 소자의 선량계적 특성)

  • Nam, Young-Mi;Kim, Jang-Lyul;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • Sintered LiF:Mg,Cu,Na,Si thermoluminescence (TL) pellets were developed for application in radiation dosimetry. In the present study, the TL dosimetric properties of LiF:Mg,Cu,Na,Si TL pellets have been investigated for emission spectrum, dose response, energy response, and fading characteristics. LiF:Mg,Cu,Na,Si TL pellets were made by using a sintering process, that is, pressing and heat treatment from TL powders. Photon irradiations for the experiments were carried out using X-ray beams and a $^{137}Cs$ gamma source at the Korea Atomic Energy Research Institute (KAERI). The average energies and the dose were in the range of 20-662 keV and $10^{-6}-10^{-2}\;Gy$, respectively. The glow curves were measured with a manual type TLD reader(System 310, Teledyne) at a constant nitrogen flux and a linear heating rate. For a constant heating rate of $5^{\circ}C\;s^{-1}$, the main dosimetric peak of glow curve appeared at $234^{\circ}C$, the activation energy was 2.34 eV and frequency factor was $1.00{\times}10^{23}$. TL emission spectrum is appeared at the blue region centered at 410 nm. A linearity of photon dose response was maintained up to 100 Gy. The photon energy responses relative to $^{137}Cs$ response were within ${\pm}20%$ at overall photon energy region. The fading of TL sensitivity of the pellets stored at the room temperature was not found for one year.

  • PDF

New Boron Compound, Silicon Boride Ceramics for Capturing Thermal Neutrons (Possibility of the material application for nuclear power generation)

  • Matsushita, Jun-ichi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.15-15
    • /
    • 2011
  • As you know, boron compounds, borax ($Na_2B_4O_5(OH)_4{\cdot}8H_2O$) etc. were known thousands of years ago. As for natural boron, it has two naturally occurring and stable isotopes, boron 11 ($^{11}B$) and boron 10 ($^{10}B$). The neutron absorption $^{10}B$ is included about 19~20% with 80~81% $^{11}B$. Boron is similar to carbon in its capability to form stable covalently bonded molecular networks. The mass difference results in a wide range of ${\beta}$ values between the $^{11}B$ and $^{10}B$. The $^{10}B$ isotope, stable with 5 neutrons is excellent at capturing thermal neutrons. For example, it is possible to decrease a thermal neutron required for the nuclear reaction of uranium 235 ($^{235}U$). If $^{10}B$ absorbs a neutron ($^1n$), it will change to $^7Li+^1{\alpha}$ (${\alpha}$ ray, like $^4He$) with prompt ${\gamma}$ ray from $^{11}B$ $^{11}B$ (equation 1). $$^{10}B+^1n\;{\rightarrow}\;^{11}B\;{\rightarrow}\; prompt \;{\gamma}\;ray (478 keV), \;^7Li+4{\alpha}\;(4He)\;\;\;\;{\cdots}\; (1)$$ If about 1% boron is added to stainless steel, it is known that a neutron shielding effect will be 3 times the boron free steel. Enriched boron or $^{10}B$ is used in both radiation shielding and in boron neutron capture therapy. Then, $^{10}B$ is used for reactivity control and in emergency shutdown systems in nuclear reactors. Furthermore, boron carbide, $B_4C$, is used as the charge of a nuclear fission reaction control rod material and neutron cover material for nuclear reactors. The $B_4C$ powder of natural B composition is used as a charge of a control material of a boiling water reactor (BWR) which occupies commercial power reactors in nuclear power generation. The $B_4C$ sintered body which adjusted $^{10}B$ concentration is used as a charge of a control material of the fast breeder reactor (FBR) currently developed aiming at establishment of a nuclear fuel cycle. In this study for new boron compound, silicon boride ceramics for capturing thermal neutrons, preparation and characterization of both silicon tetraboride ($SiB_4$) and silicon hexaboride ($SiB_6$) and ceramics produced by sintering were investigated in order to determine the suitability of this material for nuclear power generation. The relative density increased with increasing sintering temperature. With a sintering temperature of 1,923 K, a sintered body having a relative density of more than 99% was obtained. The Vickers hardness increased with increasing sintering temperature. The best result was a Vickers hardness of 28 GPa for the $SiB_6$ sintered at 1,923K for 1 h. The high temperature Vickers hardness of the $SiB_6$ sintered body changed from 28 to 12 GPa in the temperature range of room temperature to 1,273 K. The thermal conductivity of the SiB6 sintered body changed from 9.1 to 2.4 W/mK in the range of room temperature to 1,273 K.

  • PDF

Evaluation on the Accuracy of Targeting Error Correction Through the Application of Target Locating System in Robotic CyberKnife (로봇 사이버나이프에서 위치인식시스템을 이용한 Targeting Error값 보정의 정확성 평가)

  • Jeong, Young-Joon;Jung, Jae-Hong;Lim, Kwang-Chae;Cho, Eun-Ju
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Purpose: The purpose is to evaluate the accuracy of correcting the targeting error through the Target Location System (TLS) for the location change error of the reference point which arises from the movement or motion of patient during the treatment using the CyberKnife. Materials and Methods: In this test, Gafchromic MD-55 film was inserted into the head and neck phantom to analyze the accuracy of the targeting, and then the 6 MV X-ray of CyberKnife (CyberKnife Robotic Radiosurgery System G4, Accuray, US) was irradiated. End to End (E2E) program was used to analyze the accuracy of targeting, which is provided by Accuray Corporation. To compute the error of the targeting, the test was carried out with the films that were irradiated 12 times by maintaining the distance within the rage of $0{\pm}0.2\;mm$ toward x, y, z from the reference point and maintaining the angle within the rage of $0{\pm}0.2^{\circ}$ toward roll, pitch, yaw, and then with the films which were irradiated 6 times by applying intentional movement. And the correlation in the average value of the reference film and the test film were analyzed through independent samples t-test. In addition, the consistency of dose distribution through gamma-index method (dose difference: 3%) was quantified, compared, and analyzed by varying the distance to agreement (DTA) to 1 mm, 1.5 mm, 2 mm, respectively. Results: E2E test result indicated that the average error of the reference film was 0.405 mm and the standard deviation was 0.069 mm. The average error of the test film was 0.413 mm with the standard deviation of 0.121 mm. The result of independent sampling t-test for both averages showed that the significant probability was P=0.836 (confidence level: 95%). Besides, by comparing the consistency of dose distribution of DTA through 1 mm, 1.5 mm, 2 mm, it was found that the average dose distribution of axial film was 95.04%, 97.56%, 98.13%, respectively in 3,314 locations of the reference film, consistent with the average dose distribution of sagittal film that was 95.47%, 97.68%, 98.47%, respectively. By comparing with the test film, it was found that the average dose distribution of axial film was 96.38%, 97.57%, 98.04%, respectively, at 3,323 locations, consistent with the average dose distribution of sagittal film which was 95.50%, 97.87%, 98.36%, respectively. Conclusion: Robotic CyberKnife traces and complements in real time the error in the location change of the reference point caused by the motion or movement of patient during the treatment and provides the accuracy with the consistency of over 95% dose distribution and the targeting error below 1 mm.

  • PDF

The evaluation on the biological safety of diagnostic ultrasound using radiation-induced apoptosis in the external granular layer of mouse cerebellum (마우스 소뇌과립층의 apoptosis를 지표로 한 진단용 초음파의 안전성 검증)

  • Oh, Heon;Lee, Song-eun;Yang, Jung-ah;Jo, Sung-kee;Chung, Chi-young;Son, Chang-ho;Kim, Sung-ho
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.628-634
    • /
    • 1999
  • We have studied, by a nonisotopic in situ end-labeling(ISEL) technique, frequency of apoptosis in the external granular layer(EGL) of the cerebellum of immature mice by ${\gamma}$-rays irradiation from $^{60}Co$ or diagnostic ultrasound exposure. The total number of normal cells and cells showing morphological features of apoptosis were counted. The frequency of apoptotic cells was expressed as a percentage of the total number of cells in EGL. The extent of changes following 200 cGy(1090 cGy/min) was studied at 2, 4, 6, 8, 12, or 24 hours after exposure. The maximal frequency was found 6~8 hours after exposure. The immature mice that received 18, 36, 54, 108, 198, 396 cGy of ${\gamma}$-rays or diagnostic ultrasound(7.5MHz, 4.2mW, $I_{SPTA}=7.9mW/cm^2$, $I_{SPTA}=114.3W/cm^2$) for 10 or 30 minutes were examined 6 hours after irradiation. Measurements performed after ${\gamma}$-ray irradiation showed a dose-related increase in apoptotic cells in each of the mice studied. The dose-response curves were analyzed by a linear-quadratic model ; frequency of apoptotic cell in the EGL was y = $(0.1349{\pm}0.01175)D$+$(-0.0001522{\pm}0.0000334)D^2$+0.048($r^2$ = 0.981, D = dose in cGy). In the experiment of ultrasound exposure, the frequency of apoptotic cell was $0.106{\pm}0.130$(10 minutes exposure) and $0.167{\pm}0.220$(30 minutes exposure). We estimated the relative dose of the yield from the experiment with ultrasound by substituting the yield from ultrasound exposure into the curve from the ${\gamma}$-irradiation. The relative dose of ultrasound exposure compared with ${\gamma}$-irradiation were 0.432 cGy(10 minutes exposure) and 0.885 cGy(30 minutes exposure). We have found that there is no evidence to indicate that diagnostic ultrasound involves a significant risk.

  • PDF

Dosimetric Characteristics of the KCCH Neutron Therapy Facility (원자력병원 중성자선치료기의 물리적특성)

  • Yoo Seong Yul;Noh Sung Woo;Chung Hyun Woo;Cho Chul Koo;Koh Kyoung Hwan;Bak Joo Shik;Eenmaa Juri
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.85-91
    • /
    • 1988
  • For the physical characterization of neutron beam, dosimetric measurements had been performed to obtain physical data of KCCH cyclotron-produced neutrons for clinical use. The results are presented and compared with the data of other institutions from the literatures. The central axis percent depth dose, build-up curves and open and wedge isodose curve values are intermediate between that of a 4 and 6 MV X-rays. The build-up level of maximum dose was at 1.35cm and entrance dose was approximately $40\%$. Flatness of the beam was $9\%$ at Dmax and less $than{\pm}3\%$ at the depth of $80\%$ isodose line. Penumbra begond the $20\%$ line is wider than corresponding photon beam. The output factors ranged 0.894 for $6\times6cm$ field to 1.187 for $30\times30cm$ field. Gamma contamination of neutron beam was $4.9\%$ at 2 cm depth in $10\times10cm$ field.

  • PDF

Change of Dose Distribution on the Beam Axis of 60Co γ Ray and 10MV X-Ray with Part Thickness (치료부위(治療部位)두께에 따른 Co-60 γ선(線)과 10MV X선(線)의 선축상(線軸上) 선량분포(線量分布)의 변화(變化))

  • Kang, Wee Saing;Koh, Kyoung Hwan;Ha, Sung Whan;Park, Charn Il
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.21-24
    • /
    • 1983
  • The thickness of the part being irradiated is finite. Percent depth dose tables being used routinely are generally obtained from dosimetry in a phantom much thickner than usual patient. At or close to exit surface, the dose should be less than that obtained from the percent depth dose tables, because of insufficient volume for backscattering. To know the difference between the true absorbed dose and the dose obtained from percent depth dose table, the doses at or close to the exit surface were measured with plate type ionization chamber with volume of 0.5ml. The results are as follows; 1. In the case of $^{60}Co$, percent depth dose at a given depth increases with underlying phantom thickness up to the 5cm. 2. In the case of $^{60}Co$, the dose correction factor at exit surface which is less than 1, increases with part thickness and decreases with field size. 3. Exposure time may not be corrected when the part above 10cm in thickness is treated by $^{60}Co$. 4. In the case of 10MV x-ray, the dose correction factor is nearly 1 and constant for the underlying phantom thickness and field size, so the correction of monitor unit is not necessary for part thickness.

  • PDF

Incidence of micronuclei in lymphocytes of pig in the high background radiation area (Cheongwon-gun and Boeun-gun) (국내 자연 방사선 고준위 지역(청원군, 보은군) 사육 돼지의 림프구 미소핵 발생 평가)

  • Lee, Hae-June;Kang, Chang-Mo;Kim, Se-Ra;Lee, Jin-Hee;Kim, Joong-Sun;Kim, Jong-Choon;Kim, Ill-Hwa;Kim, Tae-Hwan;Ryu, Si-Yun;Jo, Sung-Kee;Choi, Soo-Yong;Kim, Sung-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.4
    • /
    • pp.469-475
    • /
    • 2005
  • Cytogenetic and hematological analysis was performed in peripheral blood obtained from pigs bred in the high background radiation areas (HBRA) (Cheongwon-gun and Boeun-gun) and a control area. The frequencies of gamma-ray induced micronuclei (MN) in the cytokinesis-blocked (CB) lymphocytes at several doses were measured in three pigs. An estimated dose of radiation was calculated by a best fitting linear-quadratic model based on the radiation-induced MN formation from the swine lymphocytes exposed in vitro to radiation over the range from 0 mGy to 1,969 mGy. The measurements performed after irradiation showed dose-related increases in the MN frequency in each donors. The results were analyzed using a linear-quadratic model with a line of best fit of $y=0.0005404D^2+0.04237D+0.00833$ [y = number of MN/cytokinesis-blocked (CB) cells and D = irradiation dose in Gy]. MN rates per 1,000 CB lymphocytes of pig from the HBRA (Cheongwon-gun, Boeun-gun) and the control area were $6.70{\pm}2.36$, $9.00{\pm}3.50$ and $11.00{\pm}2.98$, respectively. The MN frequencies of CB lymphocytes from pigs bred in three areas means that the values are within the background variation in this experiment. The MN frequencies and hematological values were similar regardless of whether the pigs were bred in the HBRA or the control area.

The Crystal and Molecular Structure of N-Acetyl-L-cysteine (N-Acetyl-L-cysteine의 결정 및 분자구조)

  • Young Ja Lee;Il-Hwan Suh
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.193-200
    • /
    • 1980
  • The crystal structure of N-acetyl-L-cysteine, $C_5H_9NO_3S,$ has been determined from three dimensional photographic intensity data $(CuK{\alpha}$ radiation) by single crystal X-ray diffraction analysis. There is one formula unit in the triclinic unit cell with a = 7.04(3), b = 5.14(2), c = 8.25(3) ${\AA}$, ${\alpha}$ = 106(2), ${\beta}$ = 51(1), ${\gamma}$ = 124(2)$^{\circ}$ and space group P$_1$, The structure was solved by the direct method and refined by the full matrix least-squares method. The final R value is 12.3% for 629 observed reflections. The C-carboxyl group and the N-acetyl group are very neary planar. The molecule appears to form with neighboring molecules a hydrogen bond, $O-H{\cdot}{\cdot}{\cdot}O(3)$ of length 2.59${\AA}$.

  • PDF

[ $C_{28}H_{41}N_4O_4Br\;{\cdot}\;2H_2O$ ] (C_{28}H_{41}N_4O_4Br\;{\cdot}\;2H_2O$의 결정구조)

  • Kim Moon-Jib;Lee Jung-Ah;Jo Kyung-Jin;Choi Ki-Young
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.93-98
    • /
    • 2004
  • The structure of C_{28}H_{41}N_4O_4Br\;{\cdot}\;2H_2O$ has been determined by X-ray deffraction methods. The crystal system is triclinic, space group Pl, unit cell constants, a=9.000(1) $\AA$, b=9.312(3) $\AA$, c=9.344(2) $\AA$, $\alpha=89.37(20)^{\circ},\;\beta=68.81(3)^{\circ},\;\gamma=84.70(4)^{\circ},\;V=726.7(8){\AA},\;T=298K,\;Z=1,\;D_c=1.402Mgm^{-3}$. The intensity data were collected on an Enraf-Nonius CAD4 Diffractometer with graphite monochromated $MoK\alpha$ radiation $(\lambda=0.71073\;{\AA}$. The molecular structure was solved by direct methods and refined by full-matrix least squares to a final $R=5.95\%$ for 2521 unique observed $F_0>4\sigma(F_0)$reflections and 370 parameters.