• Title/Summary/Keyword: ${\gamma}$-Ray radiation

Search Result 886, Processing Time 0.026 seconds

Comparison of the effects of gamma ray, electron beam, and X-ray irradiation to improve safety of black pepper powder (후춧가루의 위생화를 위한 감마선, 전자선 및 X-선 조사 효과 비교)

  • Park, Jae-Nam;Jung, Koo;Yoon, Young-Min;Choi, Soo-Jeong;Kim, Jae-Hun;Lee, Ju-Woon;Song, Beom-Seok
    • Food Science and Preservation
    • /
    • v.21 no.3
    • /
    • pp.315-320
    • /
    • 2014
  • This study evaluated the effects of a gamma ray (GR), electron beam (EB), and X-ray (XR) to improve the safety of black pepper powder. The black pepper powder was irradiated by GR, EB, and XR at 2, 4, 6, 8, and 10 kGy. The results of the total bacterial populations in the black pepper power sample showed a similar effect on microbial decontamination for radiation sources. Radiation sensitivity ($D_{10}$ value) on the initial bacteria loads in the sample was 2.24 kGy in GR, 2.37 kGy in EB, and 2.75 kGy in XR. In addition, there were no differences among the radiation sources. The color values, such as L (lightness), a (redness), and b (yellowness), were not changed significantly. The sensory characteristics of GR, EB, and XR irradiated black pepper powder were decreased when the radiation dose increased, but there was no significant changes among the radiation sources. The results can be applied to investigate the effects of radiation sources on the microbiological and sensory characteristics of black pepper powder.

Effects of Gamma-ray and Chemical Mutagens on the Germination and Seedling Growth in Stevia rebaudiana Bert. (감마선 및 화학적 돌연변이원 처리가 스테비아 (Stevia rebaudiana Bert.)의 종자 발아 및 초기 생장에 미치는 영향)

  • Yoon, Tai-Young;Kim, Ee-Youb;Kim, Young-Ho;Choi, Gin-Su;Hyun, Kyung-Sup;Seong, Yoon-Hee;Jo, Han-Jig;Kim, Dong Sub;Kang, Si-Yong;Ko, Jeong-Ae
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.189-197
    • /
    • 2012
  • This study was carried out to develop the improved useful mutants for yield or composition of stevia plants using the gamma ray or chemical mutagens treatments. The seeds of stevia 'Suwon No. 11' were irradiated up to 400 Gy of gamma ray. Chemical mutagens were treated on the seeds of the 'Suwon No. 11' using 0.07% colchicine, 10 mM sodium azide, or 10 mM NMU for various durations. The germination rate, and shoot and root growth of seedling were estimated at 30 days after gamma ray irradiation or chemical mutagen treatment, and the plant height, the number of branches, and leaf length and width were examined at 3 months after mutagenesis treatments. In the case of gamma ray treatments, the germination rate and early-stage growth were decreased as the increase of radiation dose, and the 50% lethal dose was found to be 200 Gy. the plant height was decreased as the increase of radiation dose, while the number of branches per plant and leaf length were increased. Leaf shape was modified to the relatively longer one compared to the control, which was identified more apparently at the treatments of higher than 150 Gy. In the treatment of chemical mutagens, the rate of germination and survival were decreased as the increase of incubation time. The 50% lethal dose for germination rate were identified as the conditions of the 15 hours incubation in 0.07% colchicine, the 4 hrs in 10 mM sodium azide, and the 2 hrs in 10 mM NMU, in the three chemical mutagens treatments. Chemical mutagens had no influence on shoot growth, while root growth was increased, especially as the incubation time was extended. The highest root growth occurred in the NMU treatment at 6 hrs incubation time. The plant height was decreased as the increase of incubation time in the chemical mutagens treatments. Among the chemical mutagens, NMU was the most effective to induce the mutants with long-shaped or the least lobed leaves.

Effect of Low Dose of Gamma Radiation on the Growth of Groundnut (Arachis hypogaea L.) (저선량 감마선이 땅콩 생장에 미치는 효과)

  • 김재성;이은경;백명화;박홍숙;김광호
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.257-261
    • /
    • 1999
  • Effect of low dose gamma radiation on the growth of groundnut (Arachis hypognea L.) were investigated with respect to germination rate, seedling development and yield. Seeds of “Palpal” cultivar were irradiated with 0.5~20 Gy of ${\gamma}$ radiation in order to determine the hermetic effect of low dose radiation. The germination rate of ${\gamma}$-ray irradiation group was lower than that of the control but the seedling height of groundnut grown from seeds irradiated with low dose ${\gamma}$-ray was slightly higher than that of the control. The number of pod and kernels, and the seed yield increased by 27%, 17% and 19 %, respectively, in the 12.0 Gy irradiation group compared to that in the control group. The 100 seed weight was 87.2 g in the 4.0 Gy irradiation group, which was 11% heavier than 78.3 g in the control group. Low dose radiation showed an enhancement effects on the growth and yield components of groundnut.

  • PDF

Influence of low dose ${\gamma}$ radiation on the physiology of germinative seed of vegetable crops (저선량 감마선이 채소 발아종자의 생리활성에 미치는 영향)

  • Kim, Jae-Sung;Lee, Eun-Kyung;Back, Myung-Hwa;Kim, Dong-Hee;Lee, Young-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.1
    • /
    • pp.58-61
    • /
    • 2000
  • This study was conducted to determine the effect of low dose ${\gamma}-ray$ on the germination rate and physiology of germinative seeds of welsh onion ( Allicm fistulosum L. cv. Sukchangwoidae ) and spinach ( Spinacia oleracea L. cv. Chungrok ). The germination rate of irradiation group was much higher than that of the control. Especially it was noticeably higher in 1 or 2 Gy irradiation groups in the sowing spinach seeds on paper towel. On the welsh onion, the germination rate of the 1 Gy irradiation group increased by 17% compared to that of the control. Ion leakage from seeds irradiated with low dose of ${\gamma}-ray$ was decreased compared to that from the control especially at the early stage of incubation when examined by means of electric conductance. This tendency was confirmed in seeds of welsh onion and spinach. Starch hydrolysis was stimulated by ${\gamma}-ray$ irradiation in welsh onion. Furthermore ${\gamma}-ray$ irradiation was beneficial to keeping the vitality of seeds as determined through decarboxylation of glutamic acid.

  • PDF

Analysis of Shielding Effect on Gamma Radiation of Magnetic Aggregate Concrete Applied to Protective Facility (군 방호시설에 자철석 콘크리트 적용 시 감마선 차폐효과 분석)

  • Lee, Sang-Kyu;Lee, Ho-Chan;Lee, Gun-Woo;Han, Da-Hee;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.129-135
    • /
    • 2020
  • The purpose of this research is to analyze the gamma ray shielding effect of heavy concrete containing magnetic aggregate and to confirm the applicability to the military protective facilities. In general, a military concrete structure protects combatants from bullets, and also it provides some radiation shielding. In this research, experiments were conducted using a Cs-137 source to check the gamma ray shielding effect. In addition, the Monte Carlo N-Particle(MCNP) modeling was applied to evaluate the gamma ray shielding effect of a military structure. As a result, as the concrete thickness increased, the shielding performance improved according th the linear attenuation law. With that, as the ratio of magnetic aggregate was increased, gamma ray shielding performance was also improved. Therefore, this research verified that the application of magnetic aggregate concrete to military facilities for radiation shielding purposes would be useful.

Mechanism of the X-ray and Soft Gamma-ray Emissions from the High Magnetic Field Pulsar: PSR B1509-58

  • Wang, Yu;Takata, Jumpei;Cheng, Kwong Sang
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.91-94
    • /
    • 2013
  • We use the outer gap model to explain the spectrum and the energy dependent light curves of the X-ray and soft ${\gamma}$-ray radiations of the spin-down powered pulsar PSR B1509-58. In the outer gap model, most pairs inside the gap are created around the null charge surface and the gap's electric field separates the opposite charges to move in opposite directions. Consequently, the region from the null charge surface to the light cylinder is dominated by the outflow current and that from the null charge surface to the star is dominated by the inflow current. We suggest that the viewing angle of PSR B1509-58 only receives the inflow radiation. The incoming curvature photons are converted to pairs by the strong magnetic field of the star. The X-rays and soft ${\gamma}$-rays of PSR B1509-58 result from the synchrotron radiation of these pairs. The magnetic pair creation requires a large pitch angle, which makes the pulse profile of the synchrotron radiation distinct from that of the curvature radiation. We carefully trace the pulse profiles of the synchrotron radiation with different pitch angles. We find that the differences between the light curves of different energy bands are due to the different pitch angles of the secondary pairs, and the second peak appearing at E > 10 MeV comes from the region near the star, where the stronger magnetic field allows the pair creation to happen with a smaller pitch angle.

Study of Radiation Mapping System for Water Contamination in Water System (방사능 수치 오염 지도 작성을 위한 방사선 계측 시스템 연구)

  • Na, Teresa W.;Kim, Han Soo;Yeon, Jei Won;Lee, Rena;Ha, Jang Ho
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.185-189
    • /
    • 2011
  • As nuclear industry has been developed, a various types of radiological contamination has occurred. After 9.11 terror in U.S.A., it has been concerned that terrorists' active area has been enlarged to use nuclear or radioactive substance. Recently, the most powerful earth-quake stroke, which triggered a massive tsunami in Japan and then Fukushima nuclear power plant reactor has suffered from a serious accident in history. The Fukushima reactor accident has occurred an anxiety of radiation leaks and about 170,000 people have been evacuated from the accidental area near the nuclear power plant. For these reasons, a social chaos can be occurred if radiological contamination occurs to the supply system for the drinking water. As such, the establishment of the radiation monitoring system for the city main water system is compelling for the national security. In this study, a feasibility test of radiation monitoring system which consists of unified hybrid-type radiation detectors was experimented for multi detection system by using gamma-ray imaging. The hybrid-type radiation sensors were fabricated with CsI(Tl) scintillators and photodiodes. A preamplifier and amplifier was also fabricated and assembled with the sensor in the shielding case. For the preliminary test of detection of radiological contamination in the river, multi CsI(Tl)-PIN photodiode radiation detectors and $^{137}Cs$ gamma-ray source were used. The DAQ was done by Linux based ROOT program and NI DAQ system with Labview program. The simulated contamination was assumed to be occurred at Gapcheon river in Daejeon city. Multi CsI(Tl)-PIN photodiode radiation detectors were positioned at the Gapcheon river side. Assuming that the radiological contaminations flows in the river the $^{137}Cs$ gamma-ray source has been moved and then, the contamination region was reconstructed.

The Spectral Sharpness Angle of Gamma-ray Bursts

  • Yu, Hoi-Fung;van Eerten, Hendrik J.;Greiner, Jochen;Sari, Re'em;Bhat, P. Narayana;Kienlin, Andreas von;Paciesas, William S.;Preece, Robert D.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.109-117
    • /
    • 2016
  • We explain the results of Yu et al. (2015b) of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23−18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.

A comparative study of machine learning methods for automated identification of radioisotopes using NaI gamma-ray spectra

  • Galib, S.M.;Bhowmik, P.K.;Avachat, A.V.;Lee, H.K.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4072-4079
    • /
    • 2021
  • This article presents a study on the state-of-the-art methods for automated radioactive material detection and identification, using gamma-ray spectra and modern machine learning methods. The recent developments inspired this in deep learning algorithms, and the proposed method provided better performance than the current state-of-the-art models. Machine learning models such as: fully connected, recurrent, convolutional, and gradient boosted decision trees, are applied under a wide variety of testing conditions, and their advantage and disadvantage are discussed. Furthermore, a hybrid model is developed by combining the fully-connected and convolutional neural network, which shows the best performance among the different machine learning models. These improvements are represented by the model's test performance metric (i.e., F1 score) of 93.33% with an improvement of 2%-12% than the state-of-the-art model at various conditions. The experimental results show that fusion of classical neural networks and modern deep learning architecture is a suitable choice for interpreting gamma spectra data where real-time and remote detection is necessary.

Gamma ray exposure buildup factor and shielding features for some binary alloys using MCNP-5 simulation code

  • Rammah, Y.S.;Mahmoud, K.A.;Mohammed, Faras Q.;Sayyed, M.I.;Tashlykov, O.L.;El-Mallawany, R.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2661-2668
    • /
    • 2021
  • Gamma radiation shielding features for three series of binary alloys identified as (Pb-Sn), (Pb-Zn), and (Zn-Sn) have been investigated. The mass attenuation coefficients (µ/ρ) for the selected alloys were simulated using the MCNP-5 code in the energy range between 0.01 and 15 MeV. Moreover, the (µ/ρ) values were computed using WinXCOM database in the same energy range to validate the simulation results. Results reveal a good agreement between the simulated and computed values. The half value layer (HVL), mean free path (MFP), effective atomic number (Zeff) and exposure buildup factor (EBF) were evaluated for the selected binary alloys. Results showed that the PS1, PZ1, and ZS2 alloys have the best shielding parameters and better than the commercially standard and available radiation shielding materials. Therefore, the investigated alloys can be used as effective radiation shielding materials against gamma ray with energies between 0.01 and 15 MeV.