• Title/Summary/Keyword: ${\delta}$-phase

Search Result 842, Processing Time 0.018 seconds

Structural change and electrical conductivity according to Sr content in Cu-doped LSM (La1-xSrxMn0.8Cu0.2O3) (Sr 함량이 Cu-doped LSM(La1-xSrxMn0.8Cu0.2O3)의 구조적변화와 전기전도도에 미치는 영향)

  • Ryu, Ji-Seung;Noh, Tai-Min;Kim, Jin-Seong;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.78-83
    • /
    • 2012
  • The structural change and the electrical conductivity with Sr content in $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_3$ (LSMCu) were studied. $La_{0.8}Sr_{0.2}MnO_3$ (LSM) and $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_3$ ($0.1{\leq}x{\leq}0.4$) were synthesized by EDTA citric complexing process (ECCP). A decrease in the lattice parameters and lattice volumes was observed with increase of Sr content, and these results were attributed to the increasing $Mn^{4+}$ ions and $Cu^{3+}$ ions in B-site. The electrical conductivity measured from $500^{\circ}C$ to $1000^{\circ}C$ was increased with increase of Sr content in the $0.1{\leq}x{\leq}0.3$ composition range, and it was 172.6 S/cm (at $750^{\circ}C$) and 177.7 S/cm (at $950^{\circ}C$, the maximum value) in x = 0.3. The electrical conductivity was decreased in x = 0.4 because of the presence of the second phase in the grain boundaries. The lattice volume was contracted by increase of $Mn^{4+}$ ions and $Cu^{3+}$ ions in B-site according to increase of Sr content and the electrical conductivity was increased with increase of charge carriers which were involved in the hopping mechanism.

Characterization of Scaled-up Low-Trans Shortening from Rice Bran Oil and High Oleic Sunflower Seed Oil with Batch Type Reactor (회분식반응기를 이용한 미강유, 팜스테아린과 고올레인산 해바라기씨유 유래 대량 제조된 저트랜스 쇼트닝의 특성 연구)

  • Kim, Ji-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.3
    • /
    • pp.338-345
    • /
    • 2009
  • Scaled-up low-trans shortening (LTS) was produced by lipase-catalyzed interesterification. Blend of rice bran oil (RBO), palm stearin (PS) and high oleic sunflower seed oil (HO) with 1:2:0.9 (w/w/w) ratio was interesterified using immobilized lipase from Thermomyces lanuginosus (TLIM) in the batch type reactor at $65^{\circ}C$ for 24 hr, and physicochemical melting properties of LTS were compared with commercial shortening. Solid fat content (SFC) of commercial shortening (used as control) and LTS was similar at 9.56 and 8.77%, respectively, at $35^{\circ}C$. Major fatty acids in LTS were C16:1 (33.7 wt%), C18:1 (45.7 wt%) and C18:2 (13.4 wt%). Trans fatty acid content in the commercial shortening (4.8 wt%) was higher than that of LTS (0.5 wt%). After reverse-phase HPLC analysis, major triacylglycerol (TAG) species in LTS were POO, POP and PLO. Total tocopherol, ${\gamma}$-oryzanol and phytosterol contents in the LTS were 12.37, 0.43 and 251.38 mg/100 g, respectively. Hardness of LTS was similar to that of commercial shortening. Also, x-ray diffraction analysis showed coexistence of ${\beta}'$ and ${\beta}$ form in the LTS.