• Title/Summary/Keyword: ${\beta}-Glucosidase$

Search Result 522, Processing Time 0.028 seconds

Sugarcane Bagasse Hydrolysis Using Yeast Cellulolytic Enzymes

  • de Souza, Angelica Cristina;Carvalho, Fernanda Paula;Silva e Batista, Cristina Ferreira;Schwan, Rosane Freitas;Dias, Disney Ribeiro
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1403-1412
    • /
    • 2013
  • Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with $H_2SO_4$. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant ${\beta}$-glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% $H_2SO_4$ for 30 min at $150^{\circ}C$. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good ${\beta}$-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production.

The Activity and Structure of Bacterial Community within Artificial Vegetation Island (AVI) (인공 수초재배섬에서 세균의 활성과 세균 군집 구조)

  • Jeon, Nam-Hui;Park, Hae-Kyung;Byeon, Myeong-Seop;Choi, Myung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.676-682
    • /
    • 2007
  • The bacterial number, extracellular enzyme activities and structure of bacterial community which are major constituent of aquatic ecosystem within the artificial vegetation island (AVI) were compared to those of the nearby pelagic lake waters in order to evaluate the possibility of the AVI as a eco-technological measure for water quality improvement and restoration of littoral zone in man-made reservoirs. There was not a significant difference in the total number of bacteria, but the number of active (viable) bacteria within the AVI was about 0.7 to 4.1 times higher than nearby pelagic lake water. The ratio of the number of active bacteria versus the total number of bacteria was also higher in the AVI than nearby pelagic lake water. The activities of ${\beta}$-glucosidase and phosphatase were 1.0 to 13.1 and 0.8 to 7.3 times higher respectively in the AVI than nearby pelagic lake water, showing that microorganisms were more active within the AVI. The bacterial communities of the two waters, examined by FISH method, did not indicate a clear difference in the springtime when the growth of macrophytes was immature, but during summer and fall it showed a clear difference indicating the formation of distinct bacterial community within the AVI compared to nearby lake water. From the results of this study, we conclude that AVI can contribute to make up the littoral ecosystem which show rapid cycling of matters through active detritus food chain in the dam reservoirs which have unstable aquatic ecosystem due to short hydraulic residence time and to strengthen the self-purification capacity of the lake.

Effects of Fermentation Parameters on Cellulolytic Enzyme Production under Solid Substrate Fermentation (농부산물을 이용한 고체발효에서 발효조건이 목질계 분해 효소 생산에 미치는 영향)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.302-306
    • /
    • 2014
  • The present study was carried out to optimize fermentation parameters for the production of cellulolytic enzymes through solid substrate fermentation of Trichoderma reesei and Aspergillus niger grown on wheat straw. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation parameters including temperature, pH, moisture content and particle size. The results of optimization indicated that $40^{\circ}C$, pH 7, moisture content 75% and particle size between 0.25~0.5 mm were found to be the optimum condition at 96 hr fermentation. Under the optimal condition, co-culture of T. reesei and A. niger produced cellulase activities of 10.3 IU, endoglucanase activity of 100.3 IU, ${\beta}$-glucosidase activity of 22.9 IU and xylanase activity of 2261.7 IU/g dry material were obtained. Cellulolytic enzyme production with optimization showed about 72.6, 48.8, 55.2 and 51.9% increase compared to those obtained from control experiment, respectively.

Enzymatic Transformation of Ginsenoside Rb1 by Lactobacillus pentosus Strain 6105 from Kimchi

  • Kim, Se-Hwa;Min, Jin-Woo;Quan, Lin-Hu;Lee, Sung-Young;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.291-297
    • /
    • 2012
  • Ginsenoside (ginseng saponin), the principal component of ginseng, is responsible for the pharmacological and biological activities of ginseng. We isolated lactic acid bacteria from Kimchi using esculin agar, to produce ${\beta}$-glucosidase. We focused on the bio-transformation of ginsenoside. Phylogenetic analysis was performed by comparing the 16S rRNA sequences. We identified the strain as Lactobacillus (strain 6105). In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside Rb1 to catalyse the reaction. A carbon substrate, such as cellobiose, lactose, and sucrose, resulted in the highest yields of ${\beta}$-glucosidase activity. Biotransformations of ginsenoside Rb1 were analyzed using TLC and HPLC. Our results confirmed that the microbial enzyme of strain 6105 significantly transformed ginsenoside as follows: Rb1${\rightarrow}$gypenoside XVII, Rd${\rightarrow}$F2 into compound K. Our results indicate that this is the best possible way to obtain specific ginsenosides using microbial enzymes from 6105 culture.

A Fermented Ginseng Extract, BST204, Inhibits Proliferation and Motility of Human Colon Cancer Cells

  • Park, Jong-Woo;Lee, Jae-Cheol;Ann, So-Ra;Seo, Dong-Wan;Choi, Wahn-Soo;Yoo, Young-Hyo;Park, Sun-Kyu;Choi, Jung-Young;Um, Sung-Hee;Ahn, Seong-Hoon;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • Panax ginseng CA Meyer, a herb from the Araliaceae, has traditionally been used as a medicinal plant in Asian countries. Ginseng extract fermented by ginsenoside-${\beta}$-glucosidase treatment is enriched in ginsenosides such as Rh2 and Rg3. Here we show that a fermented ginseng extract, BST204, has anti-proliferative and anti-invasive effects on HT-29 human colon cancer cells. Treatment of HT-29 cells with BST204 induced cell cycle arrest at $G_1$ phase without progression to apoptosis. This cell cycle arrest was accompanied by up-regulation of tumor suppressor proteins, p53 and p21$^{WAF1/Cip1}$, down-regulation of the cyclin-dependent kinase/cyclins, Cdk2, cyclin E, and cyclin D1 involved in $G_1$ or $G_1/S$ transition, and decrease in the phosphorylated form of retinoblastoma protein. In addition, BST204 suppressed the migration of HT-29 cells induced by 12-O-tetradecanoylphorbol-13-acetate, which correlated with the inhibition of metalloproteinase-9 activity and extracellular signal-regulated kinase activity. The effects of BST204 on the proliferation and the invasiveness of HT-29 cells were similar to those of Rh2. Taken together, the results suggest that fermentation of ginseng extract with ginsenoside-${\beta}$-glucosidase enhanced the anti-proliferative and the anti-invasive activity against human colon cancer cells and these anti-tumor effects of BST204 might be mediated in part by enriched Rh2.

A Study on Sugars in Korean Sweet Rice Drink "Sikhye" -4. Glutinous Rice Sikhye- (식혜의 이소말토올리고당에 관한 연구 -4보 찹쌀식혜-)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.2
    • /
    • pp.180-185
    • /
    • 1997
  • Sikye was produced from glutinous rice. The glutinous rice Sikhye was found to contain 7.3% of limit dextrin, 10.1% of maltose, 1.3% of maltotriose and 1.75% of rice residue. Limit dextrin in glutinous rice Sikhye was purified by ethanol fractionation followed by gel chromatography on Biogel P-2. The purified limit dextrin showed both signal of $\alpha$-1,4- and $\alpha$-1,6-glucosidic linkage with its estimation ratio of 5:1 by 1H-NMR analysis. Limit dextrin was digested with enzymes(30units/ml) of $\alpha$-amylase, $\alpha$-glucosidase and glucoamylase from Aspergillus awamori, sweet potato $\beta$-amylase and human salivary $\alpha$-amylase at 37$^{\circ}C$ for 1 hour, respectively. Hydrolysis rates of these amylases on it were similar that of rice Sikhye. $\alpha$-Glucosidase plus human salivary $\alpha$-amylase hydrolyzed it to 18%. The results suggest that glutinous rice is more effective to produce high level of branched maltooligosaccharide compared with rice as raw material for Sikye making.

  • PDF

The Effects of Physico-Chemical Factors on the Microbial Population in Groundwater (지하수 세균 군집에 미치는 물리화학적 환경요인의 영향)

  • 안영범;김여원;이대영;민병례;최영길
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.215-222
    • /
    • 1998
  • The objective of this study was to investigate the effects of physico-chemical environmental factors on the changes of bacterial population from two sites used for drinking water and eight sites polluted with various pollutant in Seoul city. In all the stations except for two sites used for drinking water, the concentrations of nitrate- nitrogen and ammonia were in excess of the criteria of groundwater quality by the result of analysis of 40 variations including physicochemical environmental factors, heavy metals, and bacterial populations. The numbers of total bacteria, heterotrophic bacteria and functional groups of bacteria were ranged from 5.1 to 41.4${\times}$10$\^$5/cells/ml and from 0.01 to 29.6${\times}$10$^4$cfu/ml, respectively. The activities of extracellular enzymes showed the ranges of 0.005∼11.3${\mu}$M/l/hr and its order to lipase, phophatase, ${\beta}$-glucosidase, cellulase, chitinase, amylase. The results of correspondence and multidimensional scaling analysis between bacterial populations and its physico-chemical environmental factors were explained the effects of physico-chemical environmental factors according to site characters and separated four group, which is accord with potential pollutants at wells.

  • PDF

Isolation of a Thermophilic Mutant, Talaromyces luteus 2004 in relation to the Regulation of Carboxymethylcellulase Production and Enzymatic characteristics (고온성 변이균주 Talaromyces luteus 2004의 분리와 Carboxymethylcellulase의 생성 조절 및 효소의 특성)

  • Hong, Mi-Kyung;Han, Hyo-Young;Jung, Young-Hee;Min, Kyung-Hee
    • The Korean Journal of Mycology
    • /
    • v.24 no.3 s.78
    • /
    • pp.206-213
    • /
    • 1996
  • Talaromyces luteus 2004, a thermophilic mutant of T. luteus 6112 was obtained by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. T. luteus 2004 produced thermophilic carboxymethylcellulase (CMCase), and other polysaccharide enzymes: avicellase, xylanase, and ${\beta}-glucosidase$. Induction of CMCase production was shown at the highest level in 3% carboxymethylcellulose (CMC) minimal broth, indicating that CMC could work as an inducer. However, glucose and D-cellobiose showed catabolite repression for CMCase production which was under the control of CMC utilization. Optimal conditions for CMCase activity were at $70^{\circ}C$ and pH 4.0, suggesting that CMCase of T. luteus 2004 was a thermophilic enzyme.

  • PDF

Distribution of Heterotrophic Bacterial Flora in Soil on the King George Island (Antarctica) and Their Enzyme Activities (남극 King Geroge Island 토양의 종속영양 세균 분포상과 효소 활성도)

  • 김상진;이승복
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.199-203
    • /
    • 1990
  • To study distribution of bacterial flora and their biochemical characteristics in the Antarctic soilecosystem, these experiments were performed during the austral summer(Feb., 1989) on the King George Island, Antarctica. The numbers of heterotrophic bacterial colonies and extracellular enzyme actibities were estimated from the Antarctic terrestrial soils which were sampled from 17 different locations near Sejong station (Korea) and Teniente Jubany station (Argentina) on the King George Island. The numbers of heterotrophic bacterial colonies were extremely variable with sampling sites and incubation temperatures. Arithmetric average numbers were $2.5\times 10^{4}$, $2.7\times 10^{7}$ , $6.9\times 10^{5}$ CFU/$cm^{3}$ soil at the incubation temperature of $37^{\circ}C$, $25^{\circ}C$ and $4^{\circ}C$, respectively. The activities of extracellular $\alpha$-glucosidase, $\beta$-glucosidase and N-acetyl-$\beta$-glucosaminidase were shown as similar mean percentage in the colonies obtained at different temperatures. Mean value of protease activities, however, was remarkably higher (92%) in the colonies grown at $4^{\circ}C$,.

  • PDF

Complete genome sequence of Flavivirga eckloniae ECD14T isolated from a seaweed Ecklonia cava (감태(Ecklonia cava)에서 분리한 Flavivirga eckloniae ECD14T의 유전체 서열 분석)

  • Lee, Ji Hee;Kang, Joo Won;Kim, Eun Mi;Seong, Chi Nam
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.161-163
    • /
    • 2018
  • The genome of Flavivirga eckloniae $ECD14^T$ isolated from a seaweed Ecklonia cava was sequenced. The genome comprises a single circular 5,665,358 bp chromosome with a G + C content of 33.9%, 4,647 total genes, 4,595 protein-coding genes, 44 pseudo genes, and 52 RNA genes. CRISPER genes and sequences were not found and there were some phage remnants and transposons. This strain contains alginate lyase and ${\beta}$-glucosidase genes responsible for the degradation of seaweed polysaccharides.