• Title/Summary/Keyword: ${\beta}-Gallium$ oxide

Search Result 13, Processing Time 0.02 seconds

Characterization of various crystal planes of beta-phase gallium oxide single crystal grown by the EFG method using multi-slit structure (다중 슬릿 구조를 이용한 EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면에 따른 특성 분석)

  • Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Tae-Kyung Lee;Hyoung-Jae Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • β-Ga2O3 is a material with a wide band gap of ~4.8 eV and a high breakdown-voltage of 8 MV/cm, and is attracting much attention in the field of power device applications. In addition, compared to representative WBG semiconductor materials such as SiC, GaN and Diamond, it has the advantage of enabling single crystal growth with high growth rate and low manufacturing cost [1-4]. In this study, we succeeded in growing a 10 mm thick β-Ga2O3 single crystal doped with 0.3 mol% SnO2 through the EFG (Edge-defined Film-fed Growth) method using multi-slit structure. The growth direction and growth plane were set to [010]/(010), respectively, and the growth speed was about 12 mm/h. The grown β-Ga2O3 single crystal was cut into various crystal planes (010, 001, 100, ${\bar{2}}01$) and surface processed. The processed samples were compared for characteristics according to crystal plane through analysis such as XRD, UV/VIS/NIR/Spec., Mercury Probe, AFM and Etching. This research is expected to contribute to the development of power semiconductor technology in high-voltage and high-temperature applications, and selecting a substrate with better characteristics will play an important role in improving device performance and reliability.

Growth Behavior of Heteroepitaxial β-Ga2O3 Thin Films According to the Sapphire Substrate Position in the Hot Zone of the Mist Chemical Vapor Deposition System (미스트화학기상증착 시스템의 Hot Zone 내 사파이어 기판 위치에 따른 β-Ga2O3 이종 박막 성장 거동 연구)

  • Kyoung-Ho Kim;Heesoo Lee;Yun-Ji Shin;Seong-Min Jeong;Si-Young Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.500-504
    • /
    • 2023
  • In this study, the heteroepitaxial thin film growth of β-Ga2O3 was studied according to the position of the susceptor in mist-CVD. The position of the susceptor and substrate was moved step by step from the center of the hot zone to the inlet of mist in the range of 0~50 mm. It was confirmed that the average thickness increased to 292 nm (D1), 521 nm (D2), and 580 nm (D3) as the position of the susceptor moved away from the center of the hot zone region. The thickness of the lower region of the substrate is increased compared to the upper region. The surface roughness of the lower region of the substrate also increased because the nucleation density increased due to the increase in the lifetime of the mist droplets and the increased mist density. Therefore, thin film growth of β-Ga2O3 in mist-CVD is performed by appropriately adjusting the position of the susceptor (or substrate) in consideration of the mist velocity, evaporation amount, and temperature difference with the substrate, thereby determining the crystallinity of the thin film, the thickness distribution, and the thickness of the thin film. Therefore, these results can provide insights for optimizing the mist-CVD process and producing high-quality β-Ga2O3 thin films for various optical and electronic applications.

Characteristics of Sn-doped β-Ga2O3 single crystals grown by EFG method (EFG 법으로 성장한 β-Ga2O3 단결정의 Sn 도핑 특성 연구)

  • Tae-Wan Je;Su-Bin Park;Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Yeon-Suk Jang;Won-Jae Lee;Yun-Gon Moon;Jin-Ki Kang;Yun-Ji Shin;Si-Yong Bae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The β-Ga2O3 has the most thermodynamically stable phase, a wide band gap of 4.8~4.9 eV and a high dielectric breakdown voltage of 8MV/cm. Due to such excellent electrical characteristics, this material as a power device material has been attracted much attention. Furthermore, the β-Ga2O3 has easy liquid phase growth method unlike materials such as SiC and GaN. However, since the grown pure β-Ga2O3 single crystal requires the intentionally controlled doping due to a low conductivity to be applied to a power device, the research on doping in β-Ga2O3 single crystal is definitely important. In this study, various source powders of un-doped, Sn 0.05 mol%, Sn 0.1 mol%, Sn 1.5 mol%, Sn 2 mol%, Sn 3 mol%-doped Ga2O3 were prepared by adding different mole ratios of SnO2 powder to Ga2O3 powder, and β-Ga2O3 single crystals were grown by using an edge-defined Film-fed Growth (EFG) method. The crystal direction, crystal quality, optical, and electrical properties of the grown β-Ga2O3 single crystal were analyzed according to the Sn dopant content, and the property variation of β-Ga2O3 single crystal according to the Sn doping were extensively investigated.