• Title/Summary/Keyword: ${\beta}-Eudesmol$

Search Result 26, Processing Time 0.029 seconds

Influence of ${\beta}-Eudesmol$ on Blood Pressure

  • Lim, Dong-Yoon;Kee, Young-Woo
    • Natural Product Sciences
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 2005
  • The present study was undertaken to investigate the effects of ${\beta}-eudesmol$, one of various ingredients isolated and identified from the bark of Magnolia obovata Thunberg, on arterial blood pressure and vascular contractile responses in the normotensve rats and to establish its mechanism of action. ${\beta}-Eudesmol\;(30{\sim}300\;{\mu}g/kg)$ given into a femoral vein of the normotensive rat produced a dose-dependent depressor response. These ${\beta}-eudesmol-induced$ hypotensive responses were markedly inhibited in the presence of chlorisondamine (1.0 mg/kg, i.v.) or phentolamine (2.0 mg/kg, i.v.). Interestingly, the infusion of ${\beta}-eudesmol$ (1.0 mg/kg/30min) into a femoral vein made a significant reduction in pressor responses induced by intravenous norepinephrine. Furthermore, the phenylephrine $(10^{-5}\;M)-induced$ contractile responses were depressed in the presence of high concentrations of ${\beta}-eudesmol\;(10{\sim}40\;{\mu}g/ml)$, but not affected in low concentration of ${\beta}-eudesmol\;(2.5{\sim}5\;{\mu}g/ml)$. Also, high potassium $(5.6{\times}10^{-2}\;M)-induced$ contractile responses were greatly inhibited in the presence of ${\beta}-eudesmol\;(10{\sim}40\;{\mu}g/ml)$ in a dose-dependent fashion. Taken together, these results obtained from the present study demonstrate that intravenous ${\beta}-eudesmol$ causes a dose-dependent depressor action in the anesthetized rat at least partly through the blockade of vascular adrenergic ${\alpha}_1-receptors$, in addition to the some unknown mechanism of direct vasorelaxation.

$\beta$-EUDESMOL CAUSES VASODILATORY EFFECT IN THE NORMOTENSIVE RAT

  • Lim, Dong-Yoon;Shin, Hye-Gyeong
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.138.1-138.1
    • /
    • 2003
  • $\beta$-Eudesmol is one of various compounds derived from the bark of Magnolia obovata Thunberg, a medicinal plant. It has been shown that $\beta$-eudesmol also markedly alleviated muscle fasciculation, tremor and convulsion induced by diisopropylfluorophosphate and prolonged the time to death in mice (Chiou et al., 1995). Actually, the extract of magnolia bark has been shown to have depressant actions on the cental nervous system (Watanabe et al., 1973). (omitted)

  • PDF

Studies on Essential Oils of Plants of Angelica Genus in Korea (I). -Essential Oils of Angelicae gigantis Radix- (Angelica속 생약의 정유성분에 관한 연구 (I). -참당귀의 정유성분-)

  • Chi, Hyung-Joon;Kim, Hyun-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.19 no.4
    • /
    • pp.239-247
    • /
    • 1988
  • Essential oil of the root of Angelica gigas Nakai (Umbelliferae) was investigated. Essential oil was obtained from the dried roots by steam distillation and fractionated by column chromatography. Each isolate or fraction was identified by GC, GC-MS and spectral analysis. It was found to contain eleven monoterpenes such as ${\alpha}-pinene,\;camphene,\;{\beta}-pinene,\;myrcene,\;{\alpha}-phellandrene,\;{\Delta}-3-carene,\;{\alpha}-terpinene,\;p-symene,\;limonene,\;{\gamma}-terpinene$ and terpinolene and also found to contain 4-vinylguauacol, myristicin, elemol, ${\beta}-eudesmol,\;{\alpha}-eudesmol,\;four\;sesquiterpenes\;involving\;{\Delta}-elemene$. Four sesquiterpenes and five sesquiterpene alcohols were tentatively identified by comparison of their mass spectra.

  • PDF

국내산 참당귀 추출물의 휘발성 향기성분

  • 곽재진;이재곤;장희진;김옥찬
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.2
    • /
    • pp.210-217
    • /
    • 1998
  • Volatile flavor components of extracts produced from the domestic angelica root, which are oleoresin and absolutes type, for tobacco flavoring materials were isolated by solvent extraction method and were analyzed by GC and GC/MSD. And then volatile flavor components of oleoresin were compared with volatiles isolated from absolutes. A total of 65 components were identified in the angelica root extracts, from which 41 components were identified in the oleoresin volatiles, contained 15 hydrocarbons, 12 alcohols, 6 acids, 10 esters and 2 miscellaneous components. The major components were hexadecanoic acid (7.79%), methyl palmitate (6.49%), ethyl palmitate (2.02 %) and sesquiterpenes and sesquiterpene alcohols, such as elemol (2.92 %), ${\gamma}$-selinene (2.19%), $\beta$-selinene (2.02%), $\alpha$-eudesmol (3.49%) and $\beta$-eudesmol (6.12%). On the other hand, volatiles of absolutes, from which 60 components were identified, contained 28 hydrocarbons, 14 alcohols, 5 acids, 10 esters and 3 miscellaneous components. The major components were hyrocarbons, such as undecane (5.11 %), dodecane (3.10%) and pentadecane (1.14 %), and $\alpha$-muurolene (1.64 %), ${\gamma}$-selinene (1.49%), $\beta$-selinene (2.12 %), $\alpha$-eudesmol (2.25%), $\beta$-eudesmol (4.87%), hexadecanoic acid (12.67%) and hexanoic acid (1.87 %).

  • PDF

Eudesmols Induce Apoptosis through Release of Cytochrome c in HL-60 Cells

  • Hoang, Duc Manh;Trung, Trinh Nam;He, Long;Ha, Do Thi;Lee, Myoung-Sook;Kim, Bo-Yeon;Luong, Hoang Van;Ahn, Jong-Seog;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.16 no.2
    • /
    • pp.88-92
    • /
    • 2010
  • We verified that the apoptosis activities were examined by DNA fragmentation, flow cytometric analysis with annexin V staining, activation of caspase-3, and cytochrome c release. In the result, $\alpha$- and $\beta$-eudesmol induced DNA fragmentation in HL-60 cells at a concentration of $80\;{\mu}M$, respectively. Additionally, pro-apoptotic cells sorted by flow cytometry analysis were detected in HL-60 cells to 31.77 and 29.67% with $\acute{a}$- and $\beta$-eudesmol of $80\;{\mu}M$. Thus, both $\alpha$- and $\beta$-eudesmol exerted caspase-3 activation and cytochrome c release at $80\;{\mu}M$ in HL-60 cells. These results are firstly reported that the sesquiterpenes, $\alpha$- and $\beta$-eudesmol are apoptosis inducers through mitochondria-dependent caspase cascade in HL-60 cells.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Volatile Flavor Components of Angelica gigas Nakai by the Storage Conditions (저장조건에 따른 당귀의 정유성분 변화)

  • Choi, Sung-Hee;Kim, Hye-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.513-518
    • /
    • 2000
  • Volatile flavor components of Angelica gigas Nakai affected by different storage time and temperature were investigated. The aroma compounds was extracted by a simultaneous distillation and extraction method using a Likens and Nickerson's apparatus. The concentrated extract was analyzed and identified by GC and GC-MS equipped polar and nonpolar column. The yields of volatile concentrates of Angelica gigas Nakai by low temperature storage were larger than those by room temperature storage. The GC patterns of the flavor components of both resembled but the peak area of each flavor compounds was little different. Main volatile flavor components of Angelica gigas Nakai by using polar column were ${\alpha}-pinene$, ${\beta}-pinene$, terpineol, farnesol, cadinene, guaiol, isolongifolene and eudesmol etc. Main volatile flavor components of Angelica gigas Nakai by using nonpolar column were camphene, ${\beta}-pinene$, elemol, eudesmol etc.

  • PDF

Biosynthesis of Eudesmane-type Sesquiterpenoids by The Wood-rotting Fungus, Polyporus brumalis, on Specific Medium, including Inorganic Magnesium Source

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.253-263
    • /
    • 2016
  • Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Ten additional species of white rot fungi were inoculated in medium containing nutrients such as $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ at $28^{\circ}C$ for 25 days. After 10 days of incubation, eudesmane-type sesquiterpenes, ${\beta}$-eudesmane and ${\beta}$-eudesmol, were only synthesized during the growth phase of P. brumalis. Experiments excluding one nutrient at a time were conducted to determine the effects of inorganic nutrients on sesquiterpene biosynthesis. In conclusion, GC-MS analysis showed that biosynthesis of sesquiterpenes was differentially regulated by inorganic nutrients such as $MgSO_4$, $C_4H_{12}N_2O_6$, and $KH_2PO_4$. We found $MgSO_4$ supplementation to be vital for eudesmane-type sesquiterpene biosynthesis in P. brumalis; nitrogen ($C_4H_{12}N_2O_6$) and phosphate ($KH_2PO_4$) inhibited the synthesis of P. brumalis metabolites. Magnesium is a known cofactor of sesquiterpene synthase, which promotes ${\beta}$-eudesmol synthesis. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

Anti-Inflammatory Effects of Volatile Flavor Extracts from Cnidium officinale and Angelica gigas (천궁(Cnidium officinale) 및 당귀(Angelica gigas) 휘발성 향기추출물의 항염증효과)

  • Choi, Sang-Won;Kim, Eun-Ok;Leem, Hyun-Hee;Kim, Jin-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1057-1065
    • /
    • 2012
  • The effects of volatile flavor extracts of eight different herbal medicines, Juniperus rigida (JR), Saussurea lappa SL), Cnidium officinale (CO), Angelica gigas (AG), Eugenia caryophyllata (EC), Angelica tenuissima (AT), Mentha arvense (MA), and Artemisiae argyi (AA), were investigated on LPS-stimulated inflammation using Raw 264.7 cells. The volatile flavor extracts of CO and AG considerably inhibited LPS-stimulated NO, $PGE_2$, IL-6, and TNF-${\alpha}$ (except AG) production, as well as iNOS expression. Major volatile components of CO were identified as ligustilide and of ${\beta}$-eudesmol as AG by GC-MS analysis. Thus, these results suggest that the volatile extracts of CO and AG may be useful as potential therapeutic agents for inflammation-associated disorders.

Comparison of Volatile Compounds in Plant Parts of Angelica gigas Nakai and A. acutiloba Kitagawa (참당귀와 일당귀의 부위별 휘발성 정유성분 비교)

  • Cho, Min-Gu;Bang, Jin-Ki;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.5
    • /
    • pp.352-357
    • /
    • 2003
  • Volatile flavor compounds Angelica gigas Nakai and Angelica acutiloba Kitagawa were extracted by SDE (simultaneous steam distillation & extraction) using the mixture of n-pentane and diethylether (1:1, v/v) as an extract solvent and analyzed by GC-FID and GC-MS. The amount of essential oils of top part and root in Angelica gigas were obtained in 0.063% (v/w) and 0.389% (v/w) yields as a fresh weight base, respectively. The main compounds in top parts and the root were identified as nonane (7.51% and 24.49%, respectively), ${\alpha}-pinene$ (14.64% and 31.75%), limonene+${\beta}-phellandrene$ (14.01% and 9.66%), ${\gamma}-terpinene$ (7.85% and 1.20%), germacrene-d (5.85% and 0.22%), (E,E)-${\alpha}-farnesene$ (6.05% and 1.40%), ${\beta}-eudesmol$ (5.26% and 1.84%). Although these compounds were present in both parts. The results showed large differences in. the concentrations of them much varied. The amount of essential oils stem and leaf obtained (0.068% and 0.127% in A. gigas) and (0.153% and 0.243% in A. acutiloba) yields as a fresh weight base, respectively. More than 18 and 32 components in stem and leaf have been identified, which of main components in A. gigas were ${\alpha}-pinene$, myrcene, limonene, germacrene-d, eudesmol and butylphthalide, but germacrene-d and butylphthalide contents were also different in stem and leaf. And more than 21 and 32 components in A. acutiloba were ${\gamma}-terpinene$ and butylphthalide. Volatile compounds were very different in both species.