• Title/Summary/Keyword: ${\beta}$-glucosides

Search Result 51, Processing Time 0.017 seconds

SYNTHESIS OF THE GINSENG GLYCOSIDES AND THEIR ANALOGS

  • Elyakov G. B.;Atopkina L. N.;Uvarova N. I.
    • Proceedings of the Ginseng society Conference
    • /
    • 1993.09a
    • /
    • pp.74-83
    • /
    • 1993
  • In an attempt toward the synthesis of the difficulty accessible ginseng saponins the four dammarane glycosides identical to the natural $ginsenosides-Rh_2,$ - F2, compound K and chikusetsusaponin - LT8 have been prepared from betulafolienetriol(=dammar-24-ene-$3{\alpha},12{\beta}\;20(S)-triol).\;3-O-{\beta}-D-Glucopyranoside$ of 20(S) - protopanaxadiol $(=ginsenoside-Rh_2)$ have been obtained by the regio - and stereoselective glycosylation of the $12-O-acetyldammar-24-ene-3{\beta},\;12{\beta},$ 20(S)-triol. The 12-ketoderivative of 20(S)-protopanaxadiol has been used as aglycon in synthesis of chikusetsusaponin - LT8. Attempted regio - and stereoselective glycosylation of the less reactive tertiary C - 20 - hydroxyl group in order to synthesize the $20-O-{\beta}-D-glucopyranoside$ of 20(S)-protopanaxadiol(=compound K) using 3, 12 - di - O - acetyldammar - 24 - ene - $3{\beta},12{\beta},20(S)$-trial as aglycon was unsuccessful. Glycosylation of 3, 12 - diketone of betulafolienetriol followed by $NaBH_4$ reduction yielded the $20-O-{\beta}-D-glucopyranoside\;of\;dammar-24-ene-3{\beta},12{\alpha},$ 20(S)-triol, the $12{\alpha}-epimer$ of 20(S) - protopanaxadiol. Moreover, a number of semisynthetic ocotillol - type glucosides, analogs of natural pseudoginsenosides, have been prepared.

  • PDF

Cytotoxic Constituents of the Leaves of Ixeris sonchifolia

  • Suh, Ji-Young;Jo, Young-Mi;Kim, Nam-Deuk;Bae, Song-Ja;Jung, Jee-H.;Im, Kwang-Sik
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.289-292
    • /
    • 2002
  • The ethyl acetate extract of the leaves of Ixeris sonchifolia afforded two new and two known sesquiterpene lactone glucosides of the guaiane-type, together with a known alkenol glucoside. The known compounds were identified as ixerin Z (1), ixerin Z-6'-p-hydroxyphenylace-tate (2), and (Z)-3-hexen-1-ol-$\beta$-D-glucopyranoside (3), respectively. The structures of the new compounds were elucidated as 11, 13a-dihydroixerin Z [4, 3-hydroxy-2-oxo-guaia-1 (10), $3-dien-5{\alpha},6{\beta},7{\alpha},11{\beta}H-12,6-olide-3-O-{\beta}-D-glucopyranoside],{\;}and{\;}3,10{\$beta}-dihydroxy-2-oxo-guaia-3,11(13)-dien-1{\alpha},5{\alpha},6{\alpha},7aH-12,6-olide-10-O-{\beta}-D-glucopyranoside$ (5), respectively. The cytotoxicity of these compounds against human hepatocellular carcinoma cell (HepG2) and human melanoma cell (SK-MEL-2) was evaluated.

Biosynthesis of Three Chalcone β-D-glucosides by Glycosyltransferase from Bacillus subtilis ATCC 6633

  • Fei, Yinuo;Shao, Yan;Wang, Weiwei;Cheng, Yatian;Yu, Boyang;He, Xiaorong;Zhang, Jian
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.174-180
    • /
    • 2021
  • Chalcones exhibit multiple biological activities. Various studies have attempted to modify the structure of chalcones with a special focus on the addition of substituents to the benzene rings. However, these chemical modifications did not improve the water solubility and bioavailability of chalcones. Glycosylation can markedly affect the physical and chemical properties of hydrophobic compounds. Here, we evaluated the ability of a highly promiscuous glycosyltransferase (GT) BsGT1 from Bacillus subtilis ATCC 6633 to biosynthesize chalcone glucosides. Purified BsGT1 catalyzed the conversion of 4'-hydroxychalcone (compound 1), 4'-hydroxy-4-methylchalcone (compound 2), and 4-hydroxy-4'-methoxychalcone (compound 3), into chalcone 4'-O-β-D-glucoside (compound 1a), 4-methylchalcone 4'-O-β-D-glucoside (compound 2a), and 4'-methoxychalcone 4-O-β-D-glucoside (compound 3a), respectively. To avoid the addition of expensive uridine diphosphate glucose (UDP-Glc), a whole-cell biotransformation system was employed to provide a natural intracellular environment for in situ co-factor regeneration. The yields of compounds 1a, 2a, and 3a were as high as 90.38%, 100% and 74.79%, respectively. The successful co-expression of BsGT1 with phosphoglucomutase (PGM) and UDP-Glc pyrophosphorylase (GalU), which are involved in the biosynthetic pathway of UDP-Glc, further improved the conversion rates of chalcones (the yields of compounds 1a and 3a increased by approximately 10%). In conclusion, we demonstrated an effective whole-cell biocatalytic system for the enzymatic biosynthesis of chalcone β-D-glucoside derivatives.

A Study on Alkyl Glucoside Synthesis by Amphiphilic Phase Enzyme Reaction (양친매상 효소반응에 의한 알킬글루코시드의 합성연구)

  • 허주형;임교빈김해성
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.511-517
    • /
    • 1996
  • An amphiphilic phase enzyme reaction was used to synthesize alkyl glucosides from glucose and alkyl alcohol with immobilized ${\beta}$-glucosidase using four glycol ether cosolvents(monoglyme, diglyme, 2-methoxyethanol, and 1,4-dioxane). Monoglyme was shown to be the best cosolvent for the amphiphilic phase medium composed of water/cosolvent/alkyl alcohol admixture. To obtain high yield of alkyl glucoside by amphiphilic phase enzyme reaction, hydrophilicity-hydrophobicity of amphiphilic media and enzyme microenvironment was optimized from the viewpoints of substrate solubility, enzyme activity, water activity, and dynamic equilibrium between glucose alcoholysis and glucoside hydrolysis. Under optimum reaction conditions, the highest concentrations of hexyl, octyl, decyl, and dodecyl glucosides were 18.2, 9.68, 7.27, and 6.03g/L, respectively.

  • PDF

Profiles of Isoflavone and Fatty Acids in Soymilk Fermented with Lactobacilli, Bifidobacteria, or Streptococci

  • Park, Young-Woo;Lee, Seung-Wook;Choi, Hyung-Kyoon;Yang, SeungOk;Kim, Young-Suk;Chun, Ho-Nam;Chang, Pahn-Shick;Lee, Jae-Hwan
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.294-298
    • /
    • 2009
  • Distribution of isoflavones and fatty acids in soymilk fermented with 7 Lactobacilli (L-type), 7 Bifidobacteria (B-type), or 5 Streptococci (S-type) were monitored. Total isoflavones in fermented soymilk ranged from 5.24 to $8.59{\mu}mol/g$ dry basis while those in unfermented soymilk were $8.06{\mu}mol/g$ dry basis. Depending on the types of inoculated microorganisms, fermented soymilk showed different profiles in isoflavones, especially aglycones and $\beta$-glucosides. Four L-type fermented soymilk had significantly higher aglycone content (33.69-46.21%) and low $\beta$-glucosides compared to control (p<0.05). All B-type fermented soymilk showed significantly high aglycone levels (p<0.05). Out of 5 Streptococci, 4 strains produced over 82.2% aglycones. Lipid content ranged from 162 to 224 mg/g and linoleic acid was the highest, followed by oleic, linolenic, palmitic, and stearic acids. Average ratio of unsaturated to saturated fatty acids in control, L-, B-, and S-type fermented soymilks was 6.30, 6.09, 6.30, and 5.94, respectively. This study can help to develop a fermented soymilk containing high isoflavone aglycones and low fat content.

The Radical Scavenging Effects of Stilbene Glucosides from Polygonum multiflorum

  • Ryu, Geon-Seek;Ju, Jeung-Hoon;Park, Yong-Ju;Ryu, Shi-Yong;Choi, Byoung-Wook;Lee, Bong-Ho
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.636-639
    • /
    • 2002
  • The extract of the root of Polygonum multiflorum exhibited a significant antioxidant activity assessed by the DPPH radical scavenging activity in vitro. The bioassay-guided fractionation of the extract yielded a stilbene glucoside, (E)-2,3,5,4'-tetrahydroxystilbene-2-Ο-$\beta$-d-glucopyranoside (1) as an active constituent responsible for the antioxidant property. Compound 1 demonstrated a moderate DPPH radical scavenging activity ($IC_{50}$, 40 $\mu$M), while the corresponding deglucosylated stilbene 2 exhibited a much higher activity ($IC_{50}$, 0.38 $\mu$M).

Changes in Biological Qualities of Soy Grits Cheonggukjang by Fermentation with β-Glucosidase-Producing Bacillus Strains (β-Glucosidase 활성이 있는 균주 Bacillus Strains를 접종해 제조한 Soy Grits 청국장의 품질 특성)

  • Lee, Kyung Ha;Choi, Hye Sun;Hwang, Kyung A;Song, Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.702-710
    • /
    • 2016
  • The bioactivity of soy grits cheonggukjang was enhanced by fermentation using three ${\beta}$-glucosidase-producing Bacillus subtilis strains (HJ 18-9, HJ 25-8, and HJ 18-9+HJ 25-8) for 48 h at $37^{\circ}C$. The results indicate that protease, cellulase, and a-amylase activities significantly increased (P<0.05) with increasing fermentation time. In addition, the amino-type nitrogen content of B. subtilis-fermented soy grits cheonggukjang increased to 91.0~168.0 mg% after 48 h of fermentation. Among the isoflavones in soy grits cheonggukjang, contents of ${\beta}$-glucosides or acetyl-glucosides were reduced while aglycone content increased upon fermentation. In particular, soy grits cheonggukjang fermented with B. subtilis HJ18-9 and HJ25-8 showed the largest increases in aglycone content compared to complex treatment. These results provide useful information for development starter (single and complex) as well as for production of high quality fermented soybean food.

Purification and Characterization of ${\beta}-Glucosidase$ from Penicillium verruculosum

  • Chun, Soon-Bai;Kim, Dong-Ho;Kim, Kang-Hwa;Chung, Ki-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.188-196
    • /
    • 1991
  • The ${\beta}-glucosidase$ was purified to homogeneity from the culture filtrate of P. verruculosum by column chromatography. The enzyme was a glycoprotein with a relative size of approximately 220 kDa with an isoelectric point of 4.8, which was composed of dimeric protein of 105 kDa. The enzyme was stable up to $60^{\circ}C$ and the presence of glycerol significantly increased its thermostability. The enzyme was found to hydrolyze both ${\beta}-aryl$ and ${\beta}-alkyl-glucosides$ in addition to ${\beta}-glucosyl$ glucose and catalyzed glucosyl transfer to cellobiose. The enzyme attacked laminarin in an exotype-like fashion. The apparent Km's of the enzyme toward cellobiose, laminaribiose, laminarin were 0.53 mM, 0.35 mM and 1.11 mM, respectively. Glucose and glucono-${\delta}-lactone$ were competitive inhibitors for the enzyme. Copper ($Cu^{2+}$), mercury ($Hg^{2+}$) and p-chloromercuribenzoate were strong inhibitors of the enzyme. The immunoblotting result revealed that one form of ${\beta}-glucosidase$ was biosynthesized, irrespective of carbon sources used. Polyacrylamide gel electrophoresis analysis of the in vitro translated product of total RNA from avicel grown mycelium established that the P. verruculosum ${\beta}-glucosidase$ precursor was approximately 95 kDa in size. The amino acid composition and N-terminal amino acid sequence are given.

  • PDF

Isolation of Phenolic Glucosides from the Stems of Acer tegmentosum Max (산겨릅나무 줄기에서 페놀성 글루코사이드의 분리)

  • Hur, Jong-Moon;Yang, Eun-Ju;Choi, Sun-Ha;Song, Kyung-Sik
    • Applied Biological Chemistry
    • /
    • v.49 no.2
    • /
    • pp.149-152
    • /
    • 2006
  • The chemical constituents of Acer tegmentosum Max which belongs to Aceraceae has never been reported. The stems of A. tegmentosum were extracted with MeOH and then successively partitioned with $CH_2Cl_2$, n-BuOH, and $H_2O$ in order to investigate the major phytochemicals. Two compounds were isolated from the n-BuOH fraction through silica gel and RP-18 column chromatographies. Their chemical structures were elucidated as methyl gallate $4-O-{\beta}-D-glucoside$ and salidroside by comparing their spectral data with those in the literature.

Phytochemical Study for Botanical Utilization of the Fruits of Malus baccata (자원식물로서 응용을 위한 야광나무 열매의 식물화학적 연구)

  • Park, Hee-Juhn;Lee, Myung-Sun;Young, Han-Suk;Choi, Jae-Sue;Jung, Won-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.24 no.4
    • /
    • pp.282-288
    • /
    • 1993
  • Very little utilization of the fruits of Malus baccata(Rosaceae) has been employed for food and medicinal plants except for preparing fruit beverages. But, it was estimated as valuable to investigate the chemical components for the botanical resource of this plant. In this study, it was found that the fruits of this plant contained primary long chain alcohol, ${\beta}-sitosterol$, campesterol, ursolic acid and ${\beta}-_D-glucosides$ of ${\beta}-sitosterol$ and campesterol. However, phloretin(dihydrochalcone) and its 5-O-glucoside(phloridzin) known as plant growth regulators in many Rosaceae plants were not found in this plant material by co-TLC analysis with authentic specimens. Although plant sex hormone, estrone, was often contained in relates of M. baccata, e.g., Prunus spp., Crataegus spp. and Malus spp., this compound was not detected in this fruit by comparison with an authentic material. By RIC chromatography, it was suggested that the Soxhlet extraction by the solvent of ether was excellently useful to extract ursolic acid efficiently.

  • PDF