• 제목/요약/키워드: ${\beta}$-algebra

검색결과 28건 처리시간 0.021초

A NOTE ON THE OPERATOR EQUATION $\alpha+\alpha^{-1}$=$\beta+\beta^{-1}$

  • Thaheem, A.B.
    • 대한수학회보
    • /
    • 제23권2호
    • /
    • pp.167-170
    • /
    • 1986
  • Let M be a von Neumann algebra and .alpha., .betha. be *-automorphisms of M satisfying the operator equation .alpha.+.alpha.$^{-1}$ =.betha.+.betha.$^{-1}$ This operator equation has been extensively studied and many important decomposition theorems have been obtained by several authors (for instance see [4], [5], [2], [1]). Originally, this operator equation arose in the paper of Van Daele on the new approach of the Tomita-Takesaki theory in the case of modular operators ([7]). In the case of one-parameter automorphism groups, this equation has produced a bounded and completely positive map which can play a role similar to the infinitesimal generator (for details see [6] and [1]). A recent and one of the most important applications of this equation has been in developing an anglogue of the Tomita-Takesaki theory for Jordan algebras by Haagerup [3]. One general result of this theory is the following.

  • PDF

CLASSIFICATIONS OF (α, β)-FUZZY SUBALGEBRAS OF BCK/BCI-ALGEBRAS

  • Jun, Young Bae;Ahn, Sun Shin;Lee, Kyoung Ja
    • 호남수학학술지
    • /
    • 제36권3호
    • /
    • pp.623-635
    • /
    • 2014
  • Classications of (${\alpha},{\beta}$)-fuzzy subalgebras of BCK/BCI-algebras are discussed. Relations between (${\in},{\in}{\vee}q$)-fuzzy subalgebras and ($q,{\in}{\vee}q$)-fuzzy subalgebras are established. Given special sets, so called t-q-set and t-${\in}{\vee}q$-set, conditions for the t-q-set and t-${\in}{\vee}q$-set to be subalgebras are considered. The notions of $({\in},q)^{max}$-fuzzy subalgebra, $(q,{\in})^{max}$-fuzzy subalgebra and $(q,{\in}{\vee}q)^{max}$-fuzzy subalgebra are introduced. Conditions for a fuzzy set to be an $({\in},q)^{max}$-fuzzy subalgebra, a $(q,{\in})^{max}$-fuzzy subalgebra and a $(q,{\in}{\vee}q)^{max}$-fuzzy subalgebra are considered.

HYPER K-SUBALGEBRAS BASED ON FUZZY POINTS

  • Kang, Min-Su
    • 대한수학회논문집
    • /
    • 제26권3호
    • /
    • pp.385-403
    • /
    • 2011
  • Generalizations of the notion of fuzzy hyper K-subalgebras are considered. The concept of fuzzy hyper K-subalgebras of type (${\alpha},{\beta}$) where ${\alpha}$, ${\beta}$ ${\in}$ {${\in}$, q, ${\in}{\vee}q$, ${\in}{\wedge}q$} and ${\alpha}{\neq}{\in}{\wedge}q$. Relations between each types are investigated, and many related properties are discussed. In particular, the notion of (${\in}$, ${\in}{\vee}q$)-fuzzy hyper K-subalgebras is dealt with, and characterizations of (${\in}$, ${\in}{\vee}q$)-fuzzy hyper K-subalgebras are established. Conditions for an (${\in}$, ${\in}{\vee}q$)-fuzzy hyper K-subalgebra to be an (${\in}$, ${\in}$)-fuzzy hyper K-subalgebra are provided. An (${\in}$, ${\in}{\vee}q$)-fuzzy hyper K-subalgebra by using a collection of hyper K-subalgebras is established. Finally the implication-based fuzzy hyper K-subalgebras are discussed.

SYMBOLIC DYNAMICS AND UNIFORM DISTRIBUTION MODULO 2

  • Choe, Geon H.
    • 대한수학회논문집
    • /
    • 제9권4호
    • /
    • pp.881-889
    • /
    • 1994
  • Let ($X, \Beta, \mu$) be a measure space with the $\sigma$-algebra $\Beta$ and the probability measure $\mu$. Throughouth this article set equalities and inclusions are understood as being so modulo measure zero sets. A transformation T defined on a probability space X is said to be measure preserving if $\mu(T^{-1}E) = \mu(E)$ for $E \in B$. It is said to be ergodic if $\mu(E) = 0$ or i whenever $T^{-1}E = E$ for $E \in B$. Consider the sequence ${x, Tx, T^2x,...}$ for $x \in X$. One may ask the following questions: What is the relative frequency of the points $T^nx$ which visit the set E\ulcorner Birkhoff Ergodic Theorem states that for an ergodic transformation T the time average $lim_{n \to \infty}(1/N)\sum^{N-1}_{n=0}{f(T^nx)}$ equals for almost every x the space average $(1/\mu(X)) \int_X f(x)d\mu(x)$. In the special case when f is the characteristic function $\chi E$ of a set E and T is ergodic we have the following formula for the frequency of visits of T-iterates to E : $$ lim_{N \to \infty} \frac{$\mid${n : T^n x \in E, 0 \leq n $\mid$}{N} = \mu(E) $$ for almost all $x \in X$ where $$\mid$\cdot$\mid$$ denotes cardinality of a set. For the details, see [8], [10].

  • PDF

Fuzzy Subalgebras of Type (α, β) in BCK/BCI-Algebras

  • Jun, Young Bae
    • Kyungpook Mathematical Journal
    • /
    • 제47권3호
    • /
    • pp.403-410
    • /
    • 2007
  • Using the belongs to relation (${\in}$) and quasi-coincidence with relation (q) between fuzzy points and fuzzy sets, the concept of (${\alpha}$, ${\beta}$)-fuzzy subalgebras where ${\alpha}$ and ${\beta}$ areany two of {${\in}$, q, ${\in}{\vee}q$, ${\in}{\wedge}q$} with ${\alpha}{\neq}{\in}{\wedge}q$ was already introduced, and related properties were investigated (see [3]). In this paper, we give a condition for an (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebra to be an (${\in}$, ${\in}$)-fuzzy subalgebra. We provide characterizations of an (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebra. We show that a proper (${\in}$, ${\in}$)-fuzzy subalgebra $\mathfrak{A}$ of X with additional conditions can be expressed as the union of two proper non-equivalent (${\in}$, ${\in}$)-fuzzy subalgebras of X. We also prove that if $\mathfrak{A}$ is a proper (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebra of a CK/BCI-algebra X such that #($\mathfrak{A}(x){\mid}\mathfrak{A}(x)$ < 0.5} ${\geq}2$, then there exist two prope non-equivalent (${\in}$, ${\in}{\vee}q$)-fuzzy subalgebras of X such that $\mathfrak{A}$ can be expressed as the union of them.

  • PDF

ORDER RELATED CONCEPTS FOR ARBITRARY GROUPOIDS

  • Kim, Hee Sik;Neggers, Joseph;So, Keum Sook
    • 대한수학회보
    • /
    • 제54권4호
    • /
    • pp.1373-1386
    • /
    • 2017
  • In this paper, we introduce and explore suggested notions of 'above', 'below' and 'between' in general groupoids, Bin(X), as well as in more detail in several well-known classes of groupoids, including groups, semigroups, selective groupoids (digraphs), d/BCK-algebras, linear groupoids over fields and special cases, in order to illustrate the usefulness of these ideas. Additionally, for groupoid-classes (e.g., BCK-algebras) where these notions have already been accepted in a standard form, we look at connections between the several definitions which result from our introduction of these ideas as presented in this paper.

LEONARD PAIRS OF RACAH AND KRAWTCHOUK TYPE IN LB-TD FORM

  • Alnajjar, Hasan
    • 대한수학회논문집
    • /
    • 제34권2호
    • /
    • pp.401-414
    • /
    • 2019
  • Let ${\mathcal{F}}$ denote an algebraically closed field with characteristic not two. Fix an integer $d{\geq}3$, let $Mat_{d+1}({\mathcal{F}})$ denote the ${\mathcal{F}}$-algebra of $(d+1){\times}(d+1)$ matrices with entries in ${\mathcal{F}}$. An ordered pair of matrices A, $A^*$ in $Mat_{d+1}({\mathcal{F}})$ is said to be LB-TD form whenever A is lower bidiagonal with subdiagonal entries all 1 and $A^*$ is irreducible tridiagonal. Let A, $A^*$ be a Leonard pair in $Mat_{d+1}({\mathcal{F}})$ with fundamental parameter ${\beta}=2$, with this assumption there are four families of Leonard pairs, Racah, Hahn, dual Hahn, Krawtchouk type. In this paper we show from these four families only Racah and Krawtchouk have LB-TD form.

SR-ADDITIVE CODES

  • Mahmoudi, Saadoun;Samei, Karim
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1235-1255
    • /
    • 2019
  • In this paper, we introduce SR-additive codes as a generalization of the classes of ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$ and ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$-additive codes, where S is an R-algebra and an SR-additive code is an R-submodule of $S^{\alpha}{\times}R^{\beta}$. In particular, the definitions of bilinear forms, weight functions and Gray maps on the classes of ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$ and ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$-additive codes are generalized to SR-additive codes. Also the singleton bound for SR-additive codes and some results on one weight SR-additive codes are given. Among other important results, we obtain the structure of SR-additive cyclic codes. As some results of the theory, the structure of cyclic ${\mathbb{Z}}_2{\mathbb{Z}}_4$, ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$, ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$, $({\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+u^2{\mathbb{Z}}_2)$, $({\mathbb{Z}}_2+u{\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+u^2{\mathbb{Z}}_2)$, $({\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+v{\mathbb{Z}}_2)$ and $({\mathbb{Z}}_2+u{\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+v{\mathbb{Z}}_2)$-additive codes are presented.