• Title/Summary/Keyword: ${\beta}$-D-Xylosidase

Search Result 17, Processing Time 0.018 seconds

Exo-O-Glycosylhydrolases in Korea Ginseng Roots

  • Yelena V.Sundukova;Lee, Mi-Ja;Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.89-93
    • /
    • 2000
  • WB were screening the stele and the cortex of the ginseng roots (Panax ginseng C.A.Meyer) on the exo-0-glycosylhydrolase activities during vegetation period of 1999 year. The following p-nitrophenylglycosides were used to test exe-0-glycosylhydrolase activities: $\alpha$- and $\beta$-D-galactopyranosides,$\alpha$- and $\beta$-D-glucopyranosides, $\alpha$- and $\beta$-D-mannopyranosides, N-acetyl-$\beta$-D-glucosaminide, $\alpha$- and $\beta$-D-xylopyranosides $\alpha$- L-rhamnopyranoside, $\beta$-D-glucuronide, $\beta$-D-galacturonide, $\beta$-L-,$\alpha$-L- and $\beta$-D-fucopyranosides, $\alpha$-L-arabinopyranoside. Only $\beta$-D-galactosidase, $\alpha$-L-mannosi-dase , N- acetyl- ${\beta}$-D-slucosarninidase, $\alpha$-D-galacto sidase, $\alpha$-L-arabinosidase, and $\beta$-D-fuco sidase were found in both partsof ginseng roots. Their contents during the vegetation period were shown to differ considerably, being dependent not only on plant development stage but on plant tissue and environmental conditions too.

  • PDF

β-Xylosidase and β-mannosidase in combination improved growth performance and altered microbial profiles in weanling pigs fed a corn-soybean meal-based diet

  • Liu, Shaoshuai;Ma, Chang;Liu, Ling;Ning, Dong;Liu, Yajing;Dong, Bing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1734-1744
    • /
    • 2019
  • Objective: In this study, two glycosidases (XMosidases), ${\beta}$-xylosidase and ${\beta}$-mannosidase, were investigated on their in vitro hydrolysis activities of feed and on the improvement of growth performance in vivo in weanling pigs. Methods: Enzyme activities of XMosidases in vitro were evaluated in test tubes and simulation of gastric and small intestinal digestion, respectively, in the presence of NSPase. In vivo study was performed in 108 weaned piglets in a 28-d treatment. Pigs were allotted to one of three dietary treatments with six replicate pens in each treatment. The three treatment groups were as follows: i) Control (basal diet); ii) CE (basal diets+CE); iii) CE-Xmosidases (basal diets+ CE+${\beta}$-xylosidase at 800 U/kg and ${\beta}$-mannosidase at 40 U/kg). CE was complex enzymes (amylase, protease, xylanase, and mannanase). Results: In vitro XMosidases displayed significant activities on hydrolysis of corn and soybean meal in the presence of non-starch polysaccharide degrading enzymes (xylanase and ${\beta}$-mannanase). In vitro simulation of gastric and small intestinal digestion by XMosidases showed XMosidases achieved $67.89%{\pm}0.22%$ of dry matter digestibility and $63.12%{\pm}0.21%$ of energy digestibility at $40^{\circ}C$ for 5 hrs. In weanling pigs, additional XMosidases to CE in feed improved average daily gain, feed conversion rate (p<0.05), and apparent total tract digestibility of crude protein (p = 0.01) and dry matter (p = 0.02). XMosidases also altered the gut bacterial diversity and composition by increasing the proportion of beneficial bacteria. Conclusion: Addition of a complex enzyme supplementation (contained xylanase, ${\beta}$-mannanase, protease and amylase), XMosidases (${\beta}$-xylosidase and ${\beta}$-mannosidase) can further improve the growth performance and nutrient digestion of young pigs.

Studies on Hemicellulase System in Aspergillus niger ( I ) - Purification and reconstitution of D-xylanase - (Aspergillus niger의 Hemicellulase계 효소에 관한 연구-D-xylanase계 효소의 정제와 재조합)

  • Park, Yang-Do;Lee, Hee-Jong;Moon H. Han
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.1
    • /
    • pp.23-32
    • /
    • 1983
  • In the present study, two kinds of D-xylanases (1, 4-$\beta$-D-xylan xylanohydrolase (EC 3.2.1.8) were purified and characterized from crude extract of Aspergillus niger KG79. Xylanase I was most active at pH 5.0, whereas xylanse II at pH 4.0 Both enzymes demonstrated their maximum activity at 45$^{\circ}C$. They were relatively stable between pH 4.0 and 6.0 at 3$0^{\circ}C$ for 6 hours. Molecular weight of xylanse I and II were 12, 500 and 11, 500, respectively. Michaelis-Menten constants of xylanse I and II were 0.28% and 0.26% of xylan, respectively. Both enzymes could degrade commercial D-xylan to xylose, xylobiose, and xylotriose to the degree of about 10% of total reducing power. Xylanse I could, however, liberate arabinose from barley straw xylan in addition to xylose and xylooligasaccharides more rapidly than xylanase II. The degree of hydrolysis was about 25%. The reconstituted D-xylanase system with purified xylanases and $\beta$-xylosidase degraded commercial xylan and barley straw xylan to the degree of 28% and 54% respectively. The limit of hydrolysis by the enzymes was suggested to be resulted from the physical structure of the substrate.

  • PDF

Highly Efficient Biotransformation of Notoginsenoside R1 into Ginsenoside Rg1 by Dictyoglomus thermophilum β-xylosidase Xln-DT

  • Li, Qi;Wang, Lei;Fang, Xianying;Zhao, Linguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.447-457
    • /
    • 2022
  • Notoginsenoside R1 and ginsenoside Rg1 are the main active ingredients of Panax notoginseng, exhibiting anti-fatigue, anti-tumor, anti-inflammatory, and other activities. In a previous study, a GH39 β-xylosidase Xln-DT was responsible for the bioconversion of saponin, a natural active substance with a xylose group, with high selectivity for cleaving the outer xylose moiety of notoginsenoside R1 at the C-6 position, producing ginsenoside Rg1 with potent anti-fatigue activity. The optimal bioconversion temperature, pH, and enzyme dosage were obtained by optimizing the transformation conditions. Under optimal conditions (pH 6.0, 75℃, enzyme dosage 1.0 U/ml), 1.0 g/l of notoginsenoside R1 was converted into 0.86 g/l of ginsenoside Rg1 within 30 min, with a molar conversion rate of approximately 100%. Furthermore, the in vivo anti-fatigue activity of notoginsenoside R1 and ginsenoside Rg1 were compared using a suitable rat model. Compared with the control group, the forced swimming time to exhaustion was prolonged in mice by 17.3% in the Rg1 high group (20 mg/kg·d). Additionally, the levels of hepatic glycogen (69.9-83.3% increase) and muscle glycogen (36.9-93.6% increase) were increased. In the Rg1 group, hemoglobin levels were also distinctly increased by treatment concentrations. Our findings indicate that treatment with ginsenoside Rg1 enhances the anti-fatigue effects. In this study, we reveal a GH39 β-xylosidase displaying excellent hydrolytic activity to produce ginsenoside Rg1 in the pharmaceutical and food industries.

Production of D-Xylonic Acid from Hemicellulose Using Artificial Enzyme Complexes

  • Lee, Charles C.;Kibblewhite, Rena E.;Paavola, Chad D.;Orts, William J.;Wagschal, Kurt
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.77-83
    • /
    • 2017
  • Lignocellulosic biomass represents a potentially large resource to supply the world's fuel and chemical feedstocks. Enzymatic bioconversion of this substrate offers a reliable strategy for accessing this material under mild reaction conditions. Owing to the complex nature of lignocellulose, many different enzymatic activities are required to function in concert to perform efficient transformation. In nature, large multienzyme complexes are known to effectively hydrolyze lignocellulose into constituent monomeric sugars. We created artificial complexes of enzymes, called rosettazymes, in order to hydrolyze glucuronoxylan, a common lignocellulose component, into its cognate sugar ${\small{D}}$-xylose and then further convert the ${\small{D}}$-xylose into ${\small{D}}$-xylonic acid, a Department of Energy top-30 platform chemical. Four different types of enzymes (endoxylanase, ${\alpha}$-glucuronidase, ${\beta}$-xylosidase, and xylose dehydrogenase) were incorporated into the artificial complexes. We demonstrated that tethering our enzymes in a complex resulted in significantly more activity (up to 71%) than the same amount of enzymes free in solution. We also determined that varying the enzyme composition affected the level of complex-related activity enhancement as well as overall yield.

Hydrolysis of Arabinoxylo-oligosaccharides by α-ʟ-Arabinofuranosidases and β-ᴅ-Xylosidase from Bifidobacterium dentium

  • Lee, Min-Jae;Kang, Yewon;Son, Byung Sam;Kim, Min-Jeong;Park, Tae Hyeon;Park, Damee;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.187-194
    • /
    • 2022
  • Two α-ʟ-arabinofuranosidases (BfdABF1 and BfdABF3) and a β-ᴅ-xylosidase (BfdXYL2) genes were cloned from Bifidobacterium dentium ATCC 27679, and functionally expressed in E. coli BL21(DE3). BfdABF1 showed the highest activity in 50 mM sodium acetate buffer at pH 5.0 and 25℃. This exo-enzyme could hydrolyze p-nitrophenyl arabinofuranoside, arabino-oligosaccharides (AOS), arabinoxylo-oligosaccharides (AXOS) such as 32-α-ʟ-arabinofuranosyl-xylobiose (A3X), and 23-α-ʟ-arabinofuranosyl-xylotriose (A2XX), whereas hardly hydrolyzed polymeric substrates such as debranched arabinan and arabinoxylans. BfdABF1 is a typical exo-ABF with the higher specific activity on the oligomeric substrates than the polymers. It prefers to α-(1,2)-ʟ-arabinofuranosidic linkages compared to α-(1,3)-linkages. Especially, BfdABF1 could slowly hydrolyze 23,33-di-α-ʟ-arabinofuranosyl-xylotriose (A2+3XX). Meanwhile, BfdABF3 showed the highest activity in sodium acetate at pH 6.0 and 50℃, and it has the exclusively high activities on AXOS such as A3X and A2XX. BfdABF3 mainly catalyzes the removal of ʟ-arabinose side chains from various AXOS. BfdXYL2 exhibited the highest activity in sodium citrate at pH 5.0 and 55℃, and it specifically hydrolyzed p-nitrophenyl xylopyranoside and xylo-oligosaccharides (XOS). Also, BfdXYL2 could slowly hydrolyze AOS and AXOS such as A3X. Based on the detailed hydrolytic modes of action of three exo-hydrolases (BfdABF1, BfdABF3, and BfdXYL2) from Bf. dentium, their probable roles in the hemiceullose-utilization system of Bf. dentium are proposed in the present study. These intracellular exo-hydrolases can synergistically produce ʟ-arabinose and ᴅ-xylose from various AOS, XOS, and AXOS.

Effect of Diet on Enzyme Profile, Biochemical Changes and In sacco Degradability of Feeds in the Rumen of Buffalo

  • Kamra, D.N.;Saha, Sudipto;Bhatt, Neeru;Chaudhary, L. C.;Agarwal, Neeta
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.374-379
    • /
    • 2003
  • Four rumen fistulated Murrah buffaloes were used to study the effect of four diets differing in roughage to concentrate ratio on rumen biochemical changes, microbial enzyme profile and in sacco degradability of feed in a $4{\times}4$ Latin Square design. The animals were fed four diets consisting of 80:20, 70:30, 60:40 and 50:50 ratios of wheat straw and concentrate mixtures, respectively. Wheat straw and concentrate mixture were mixed with water (0.6 l/kg feed) and complete feed mixture was offered to the animals at 8:00 h and 16:00 h in two equal parts. The variation in pH of rumen liquor (difference of maximum and minimum during 0-8 h post feeding) increased with increasing level of concentrate mixture in the diet. There was no effect of diet composition on volatile fatty acids, total nitrogen and trichloro-acetic acid precipitable nitrogen in the rumen liquor, but ammonia nitrogen increased with increasing level of concentrate mixture in the ration. Major portions of all fibre degrading enzymes were present in the particulate material (PM) of the rumen contents, but protease was absent in PM fraction. The activities of micro-crystalline cellulase, acetyl esterase and protease increased with increase in the level of concentrate mixture, but the activities of other enzymes (carboxymethylcellulase, filter paper degrading activity, xylanase, $\beta$-glucosidase and $\beta$-xylosidase) were not affected. The in sacco degradability and effective degradability of feeds increased with increasing level of concentrate mixture in the ration.