• Title/Summary/Keyword: ${\beta}$-CH hydrogen transfer

Search Result 3, Processing Time 0.014 seconds

Homolytic Reactions of Isonitriles (이소니트릴의 자유라디칼반응)

  • Sung Soo Kim
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.250-258
    • /
    • 1980
  • Various radicals may add to isonitriles to give imidoyl radcals RN=CR'. This may be also generated via abstraction of imidoyl hydrogen from imine in the following manner: RN=CR' + R"${\cdot}{\rightarrow}$ RN=CR' + R"-H Imidoyl radicals would be stabilized via two pathways, ${\beta}$-cleavage and atom transfer reactions. ${\beta}$-Cleavage may occur in two directions depending upon structure of the radicals. Cyanide transfer and the "so-called" normal ${\beta}$-cleavage are the two modes of ${\beta}$-cleavage. Addition of t-butoxy radical to t-butyl isocyanide 7 generates an imidoyl radical t-Bu-N=C-O-Bu-t, which undergoes ${\beta}$-cleavage to give t-butyl isocyanate and t-butyl radical. Addition of phenyl radical to 7 forms the intermediate radical t-Bu-N=$C-C_6H_5$, which decomposes to give benzonitrile and t-butyl radical. The t-butyl radical generated from the ${\beta}$-cleavage adds to 7 giving the radical t-Bu-N=C-Bu-t, which cleaves only to pivalonitrile and t-butyl radical, inducing radical chain isomerization. Trimethylsilyl radical adds to 7 to give the intermediate t-Bu-N=$C-Si(CH_3)_3$, which collapses to $(CH_3)_3$SiCN and a t-butyl radical.

  • PDF

Characterization of Thermal Degradation of Polytrimethylene Terephthalate by MALDI-TOF Mass Spectrometry

  • Jang, Sung-Woo;Yang, Eun-Kyung;Jin, Sung-Il;Cho, Young-Dal;Choe, Eun-Kyung;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.833-838
    • /
    • 2012
  • The thermal degradation products of polytrimethylene terephthalate (PTT) obtained by heating the sample in the temperature range of $250-360^{\circ}C$ under non-oxidative conditions was characterized using MALDI-TOF (matrix assisted laser desorption/ionization) mass spectrometry. The structures of the degradation products were determined and the relative compositions were estimated. The MALDI-TOF mass spectra of the thermally degraded PTT sample showed three main series of oligomer products with different end groups, which were carboxyl/carboxyl, carboxyl/allyl, and allyl/allyl. In contrast to the thermal degradation of polyethylene terephthalate (PET), the oligomers containing terephthalic anhydrides were not detected, whereas the formation of oligomers containing the unsaturated allyl ester group was confirmed by mass assignment. From these results, it was concluded that the thermal degradation of PTT proceeds exclusively through the ${\beta}$-CH hydrogen transfer mechanism, which is in accordance with the proposed reaction mechanism for the thermal degradation of polybutylene terephthalate (PBT).

Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1625-1629
    • /
    • 2011
  • Kinetic studies of the reactions of O,O-diphenyl Z-S-aryl phosphorothioates with X-benzylamines have been carried out in dimethyl sulfoxide at 55.0 $^{\circ}C$. The Hammett (log $k_2$ vs ${\sigma}_X$) and Bronsted [log $k_2$ vs $pK_a(X)$] plots for substituent X variations in the nucleophiles are biphasic concave downwards with a maximum point at X = H, and the unusual positive ${\rho}_X$ and negative ${\beta}_X$ values are obtained for the strongly basic benzylamines. The sign of the cross-interaction constant (${\rho}_{XZ}$) is negative for both the strongly and weakly basic nucleophiles. Greater magnitude of ${\rho}_{XZ}$ value is observed with the weakly basic nucleophiles (${\rho}_{XZ}$ = -2.35) compared to with the strongly basic nucleophiles (${\rho}_{XZ}$ = -0.03). The deuterium kinetic isotope effects ($k_H/k_D$) involving deuterated benzylamines [$XC_6H_4CH_2ND_2$] are primary normal ($k_H/k_D$ > 1). The proposed mechanism is a concerted $S_N2$ involving a frontside nucleophilic attack with a hydrogen bonded, four-center-type transition state for both the strongly and weakly basic nucleophiles. The unusual positive ${\rho}_X$ and negative ${\beta}_X$ values with the strongly basic benzylamines are rationalized by through-space interaction between the ${\pi}$-clouds of the electron-rich phenyl ring of benzylamine and the phenyl ring of the leaving group thiophenoxide.