• Title/Summary/Keyword: ${\beta}$-Aryl group effect

Search Result 6, Processing Time 0.024 seconds

Elimination Reactions of Aryl Furylacetates Promoted by R2NH-R2NH2 + in 70 mol% MeCN(aq). Effects of β-Aryl on the Ketene-Forming Transition-State

  • Pyun, Sang Yong;Kim, Ju Chang;Cho, Bong Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2143-2147
    • /
    • 2014
  • Ketene-forming elimination from 2-X-4-nitrophenyl furylacetates (1a-d) promoted by $R_2NH-R_2NH_2{^+}$ in 70 mol % MeCN(aq) has been studied kinetically. When X = Cl and $NO_2$, the reactions exhibited second-order kinetics as well as Br$\ddot{o}$nsted ${\beta}$ = 0.37-0.54 and $|{\beta}_{lg}|$ = 0.31-0.45. The Br$\ddot{o}$nsted ${\beta}$ decreased with a poorer leaving group and $|{\beta}_{lg}|$ increased with a weaker base. The results are consistent with an E2 mechanism. When the leaving group was changed to a poorer one [X= H (1a) and $OCH_3$ (1b)], the reaction mechanism changed to the competing E2 and E1cb mechanisms. A further change to the E1cb mechanism was realized for the reaction of 1a with $i-Pr_2NH/i-Pr_2NH_2{^+}$ in 70 mol % MeCN-30 mol % $D_2O$. By comparing the kinetic results in this study with the existing data for $ArCH_2C(O)OC_6H_3-2-X-4-NO_2$, the effect of the ${\beta}$-aryl group on the ketene-forming elimination was assessed.

Elimination Reactions of (E)-2,4,6-Trinitrobenzaldehyde O-Aryloximes Promoted by R3N/R3NH+ in 70 mol% MeCN(aq). Effect of β-Aryl Group the Nitrile-Forming Transition-State

  • Pyun, Sang-Yong;Byun, Woong-Sub;Cho, Bong-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1921-1924
    • /
    • 2011
  • Nitrile-forming eliminations from $(E)-2,4,6-(NO_2)_3C_6H_2CH=NOC_6H_4-2-X-4-NO_2$ (1) promoted by $R_3NH/R_3NH^+$ in 70 mol % MeCN(aq) have been studied kinetically. When X = $NO_2$, the reactions exhibited second-order kinetics as well as Br$\"{o}$nsted ${\beta}$ = 0.63 and ${\mid}{\beta}_{lg}{\mid}$ = 0.34-0.46, and an E2 mechanism is evident. As the leaving group was made poorer (X = H, Cl, and $CF_3$), Br$\"{o}$nsted ${\beta}$ value increased from 0.63 to 0.85-0.89 without much change in the ${\mid}{\beta}_{lg}{\mid}$ value E2, indicating that structure of the transition state changed to an E1cb-like with extensive $C_{\beta}-H$ bond cleavage, significant negative charge development at the ${\beta}$-carbon, and limited $C_{\alpha}$-OAr bond cleavage.

Ketene-Forming Elimination Reactions from Aryl Thienylacetates Promoted by R2NH in MeCN. Effects of Base-Solvent and β-Aryl Group

  • Pyun, Sang-Yong;Cho, Eun-Ju;Seok, Hyoun-Jung;Kim, Ju-Chang;Lee, Seok-Hee;Cho, Bong-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.917-920
    • /
    • 2007
  • Ketene-forming eliminations from C4H3(S)CH2C(O)O-C6H3-2-X-4-NO2 (1) promoted by R2NH in MeCN have been studied kinetically. The reactions are second-order and exhibit Bronsted β =0.51-0.62 and |βlg|= 0.47-0.53. Hence, an E2 mechanism is evident. The Bronsted β increased from 0.33 to 0.53 and |βlg| remained nearly the same by the change of the base-solvent from Bz(i-Pr)NH/Bz(i-Pr)NH2+ in 70 mol% MeCN(aq) to Bz(i-Pr)NH-MeCN, indicating a change to a more symmetrical transition state with similar extents of Cβ -H and Cα -OAr bond cleavage. When the β-aryl group was changed from thienyl to phenyl in MeCN, the β value increased from 0.53 to 0.73 and |βlg| decreased from 0.53 to 0.43. This indicates that the transition state became skewed toward more Cβ -H bond breaking with less Cα-OAr bond cleavage. Noteworthy is the greater double bond stabilizing ability of the thienyl group in the ketene-forming transition state.

Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide

  • Adhikary, Keshab Kumar;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1625-1629
    • /
    • 2011
  • Kinetic studies of the reactions of O,O-diphenyl Z-S-aryl phosphorothioates with X-benzylamines have been carried out in dimethyl sulfoxide at 55.0 $^{\circ}C$. The Hammett (log $k_2$ vs ${\sigma}_X$) and Bronsted [log $k_2$ vs $pK_a(X)$] plots for substituent X variations in the nucleophiles are biphasic concave downwards with a maximum point at X = H, and the unusual positive ${\rho}_X$ and negative ${\beta}_X$ values are obtained for the strongly basic benzylamines. The sign of the cross-interaction constant (${\rho}_{XZ}$) is negative for both the strongly and weakly basic nucleophiles. Greater magnitude of ${\rho}_{XZ}$ value is observed with the weakly basic nucleophiles (${\rho}_{XZ}$ = -2.35) compared to with the strongly basic nucleophiles (${\rho}_{XZ}$ = -0.03). The deuterium kinetic isotope effects ($k_H/k_D$) involving deuterated benzylamines [$XC_6H_4CH_2ND_2$] are primary normal ($k_H/k_D$ > 1). The proposed mechanism is a concerted $S_N2$ involving a frontside nucleophilic attack with a hydrogen bonded, four-center-type transition state for both the strongly and weakly basic nucleophiles. The unusual positive ${\rho}_X$ and negative ${\beta}_X$ values with the strongly basic benzylamines are rationalized by through-space interaction between the ${\pi}$-clouds of the electron-rich phenyl ring of benzylamine and the phenyl ring of the leaving group thiophenoxide.

Aminolysis of Y- Substituted Phenyl Benzenesulfonates in MeCN: Effect of Medium on Reactivity and Reaction Mechanism

  • Kim, Chae-Won;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2955-2959
    • /
    • 2011
  • Second-order rate constants for nucleophilic substitution reactions of 2,4-dinitrophenyl benzenesulfonate 1a with a series of alicyclic secondary amines in MeCN have been measured spectrophotometrically and compared with those reported previously for the corresponding reactions performed in aqueous medium to investigate the effect of medium on reactivity and reaction mechanism. The amines employed in this study are found to be more reactive in the aprotic solvent than in $H_2O$. The reactions of 1a in MeCN result in a linear Br${\o}$nsted-type plot with ${\beta}_{nuc}$ = 0.58, which contrasts to the curved Br${\o}$nsted-type plot reported previously for the corresponding reactions performed in the aqueous medium (i.e., ${\beta}_2$ = 0.86 and ${\beta}_1$ = 0.38). Accordingly, it has been concluded that the reaction mechanism changes from a stepwise mechanism to a concerted pathway upon changing the medium from $H_2O$ to MeCN. Reactions of Y-substituted phenyl benzenesulfonates 1a-c with piperidine in MeCN result in a linear Br${\o}$nsted-type plot with ${\beta}_{lg}$ = -1.31, indicating that expulsion of the leaving group is significantly more advanced than bond formation in the transition state. The trigonal bipyramidal intermediate ($TBPy^{\pm}$) proposed previously for the reactions in $H_2O$ would be highly unstable in MeCN due to strong repulsion between the negative charge in $TBPy^{\pm}$ and the negative dipole end of MeCN. Thus, destabilization of $TBPy^{\pm}$ in MeCN has been concluded to change the reaction mechanism from a stepwise mechanism to a concerted pathway.