• 제목/요약/키워드: ${\beta}$-Alanine

Search Result 216, Processing Time 0.025 seconds

Ion dependent cellular uptake of taurine in mouse osteoblast cell lines

  • Naomi Ishido;Emi Nakashima;Kang, Young-Sook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.109-109
    • /
    • 2003
  • Taurine is present in a variety of tissue and exhibits many important physiological functions in many tissues. Although it is known that many tissues mediate taurine transport, its functions of taurine transport in bone have not been identified yet. In the present study, we investigated the expression of taurine transporter (TauT) and taurine uptake using mouse stromal ST2 cells and osteoblast-like MC3T3-El cells, which is bone related cells. Detection of TauT mRNA expression in these cells were performed by reverse transcription polymerase chain reaction (RT-PCR). The activity of TauT was assessed by measuring the uptake of [$^3$H]taurine in the presence or absence of inhibitors. TauT mRNA was detected in these cells. [$^3$H]Taurine uptake was dependent upon the presence of extracellular sodium, chloride and calcium ions, and inhibited by cold-taurine and ${\beta}$-alanine. These results suggest that taurine has biological functions in bone and some effect on the bone cells.

  • PDF

Compositions of Extractive Nitrogenous Constituents and Their Monthly Variation for Fresh Capsosiphon fulvescens

  • Jung, Kyoo-Jin;Park, Jung-Nim
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.2
    • /
    • pp.120-129
    • /
    • 2010
  • To elucidate the composition of extractive nitrogenous components in the fresh Capsosiphons fulvescens cultured off the southern coast of Korea, and to determine the monthly variation of these nitrogenous components, extract samples collected monthly from December to March at Jangheung-gun, Jeonnam Province were analyzed for total nitrogen, free and combined amino acids, ATP and related compounds, betaines, trimethylamine oxide (TMAO) and trimethylamine (TMA). The content of extractive nitrogen was 1,090~1,233 mg/100 g on dry basis. The number of 21~25 ninhydrin-positive substances was detected in the analysis of free amino acids, and their total amount was 3,710~4,788 mg/100 g on dry basis. Among them, free proline, asparagine, glutamic acid, alanine, taurine and glutamine were found to be abundant. The combined amino acids amounted to 1,573~2,121 mg/100 g in total and the total amount of ATP and related compound was 33.8~84.0 mg/100 g ($1.06{\sim}2.46\;{\mu}mol/g$) on dry basis. Betaine, glycinebetaine, $\beta$-alaninebetaine, $\gamma$-butyrobetaine, homarine and trigonelline were detected in most of samples. Levels of free and combined amino acids, ATP and related compounds fluctuated from sample to sample, with their contents higher in December and January and lower in March.

Novel AGLP-1 albumin fusion protein as a long-lasting agent for type 2 diabetes

  • Kim, Yong-Mo;Lee, Sang Mee;Chung, Hye-Shin
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.606-610
    • /
    • 2013
  • Glucagon like peptide-1 (GLP-1) regulates glucose mediated-insulin secretion, nutrient accumulation, and ${\beta}$-cell growth. Despite the potential therapeutic usage for type 2 diabetes (T2D), GLP-1 has a short half-life in vivo ($t_{1/2}$ <2 min). In an attempt to prolong half-life, GLP-1 fusion proteins were genetically engineered: GLP-1 human serum albumin fusion (GLP-1/HSA), AGLP-1/HSA which has an additional alanine at the N-terminus of GLP-1, and AGLP-1-L/HSA, in which a peptide linker is inserted between AGLP-1 and HSA. Recombinant fusion proteins secreted from the Chinese Hamster Ovary-K1 (CHO-K1) cell line were purified with high purity (>96%). AGLP-1 fusion protein was resistant against the dipeptidyl peptidase-IV (DPP-IV). The fusion proteins activated cAMP-mediated signaling in rat insulinoma INS-1 cells. Furthermore, a C57BL/6N mice pharmacodynamics study exhibited that AGLP-1-L/HSA effectively reduced blood glucose level compared to AGLP-1/HSA.

Physicochemical Properties of Gelatin from Jellyfish Rhopilema hispidum

  • Cho, Suengmok;Ahn, Ju-Ryun;Koo, Ja-Sung;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.299-304
    • /
    • 2014
  • The objective of this study was to elucidate the physicochemical characteristics of gelatin extracted from jellyfish Rhopilema hispidum. We investigated the proximate composition, amino acids, gel strength, gelling/melting points, dynamic viscoelastic properties, and viscosity of jellyfish gelatin. Jellyfish gelatin contained 12.2% moisture, 1.5% lipid, 2.1% ash, and 84.8% protein. Glycine, hydroxyproline, proline, and alanine were the predominant amino acids. The gelatin showed a gel strength of 31.2 kPa, a gelling point of $18.0^{\circ}C$, and melting point of $22.3^{\circ}C$. The gelatin was composed of ${\alpha}_1$-chain, ${\alpha}_2$-chain, ${\beta}$-chain, and ${\gamma}$-chain. During cooling and heating process, jellyfish gelatin showed lower elastic modulus (G') and loss modulus (G") values than mammalian gelatin. Jellyfish gelatin did not show superior rheological properties to mammalian gelatin, like other fish gelatin; however, it can be used in various food and cosmetic products not requiring high gel strength.

Enhanced Stability of Tyrosine Phenol-Lyase from Symbiobacterium toebii by DNA Shuffling

  • Kim, Jin-Ho;Song, Jae-Jun;Kim, Bong-Gyun;Sung, Moon-Hee;Lee, Sang-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.153-157
    • /
    • 2004
  • Tyrosine phenol-lyase (TPL) is a useful enzyme for the synthesis of pharmaceutical aromatic amino acids. In the current study, sequential DNA shuffling and screening were used to enhance the stability of TPL. Twenty-thousand mutants were screened, and several improved variants were isolated. One variant named A13V, in which the $13^{th}$ amino acid alanine was substituted by valine, exhibited a higher temperature and denaturant stability than the wild-type TPL. The purified mutant TPL, A13V, retained about 60% of its activity at $76^\circ{C}$, whereas the activity of the wild-type TPL decreased to less than 20% at the same temperature. Plus, A13V exhibited about 50% activity with 3 M urea, while the wild-type TPL lost almost all its catalytic activity, indicating an increased denaturant tolerance in the mutant A13V. It is speculated that the substitution of Val for the Ala in the $\beta$-strand of the N-terminal arm was responsible for the heightened stabilization, and that the current results will contribute to further research on the structural stability of TPL.

Anti-adipogenic Effect of Hydrolysate Silk Fibroin in 3T3-L1 Cells

  • Chon, Jeong-Woo;Lee, Kwang-Gill;Park, Yoo-Kyoung;Park, Kyung-Ho;Yeo, Joo-Hong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.2
    • /
    • pp.169-174
    • /
    • 2010
  • Hydrolysate silk fibroin (HSF) is a fibrous protein composed of parallel $\beta$-structures and is made from pure silk elements including 18 amino acids, with glycine, alanine, and serine comprising of over 80% of the amino acids. Numerous studies have documented a range of effects of HSF, including moisturizing, antioxidant activity, nervous system disorders, and many more. We investigated whether HSF has anti-obesity effects in vitro. The effects of HSF inhibition on lipid accumulation and acceleration of lipid degradation in 3T3-L1 cells were studied. Treatment of 3T3-L1 cells with HSF caused significant inhibition of cell viability, an increase in glycerol release, and a decreased in adipocyte differentiation. Moreover HSF stimulated downregulated of adipogenic enzyme expressions (PPAR${\gamma}$ and C/EBP${\alpha}$) and up-regulated of fatty oxidation enzyme expressions (CPT-1 and UCP-2). Based on these results, hydrolysate silk fibroin can be suggested as a potential therapeutic substance as part of a prevention or treatment strategy for obesity.

Cloning, Sequencing, and Characterization of the Pradimicin Biosynthetic Gene Cluster of Actinomadura hibisca P157-2

  • Kim, Byung-Chul;Lee, Jung-Min;Ahn, Jong-Seog;Kim, Beom-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.830-839
    • /
    • 2007
  • Pradimicins are potent antifungal antibiotics having an unusual dihydrobenzo[$\alpha$]naphthacenequinone aglycone substituted with D-alanine and sugars. Pradimicins are polyketide antibiotics produced by Actinomadura hibisca P157-2. The gene cluster involved in the biosynthesis of pradimicins was cloned and sequenced. The pradimicin gene cluster was localized to a 39-kb DNA segment and its involvement in the biosynthesis of pradimicin was proven by gene inactivation of prmA and prmB(ketosynthases $\alpha\;and\;\beta$). The pradimicin gene cluster consists of 28 open reading frames(ORFs), encoding a type II polyketide synthase(PKS), the enzymes involved in sugar biosynthesis and tailoring enzymes as well as two resistance proteins. The deduced proteins showed strong similarities to the previously validated gene clusters of angucyclic polyketides such as rubromycin, griseorhodin, and fredericamycin. From the pradimicin gene cluster, prmP3 encoding a component of the acetyl-CoA carboxylase complex was disrupted. The production levels of pradimicins of the resulting mutants decreased to 62% of the level produced by the wild-type strain, which indicate that the acetyl-CoA carboxylase gene would have a significant role in the production of pradimicins through supplying the extender unit precursor, malonyl-CoA.

Gastroprotective effect of cirsilineol against hydrochloric acid/ethanol-induced gastric ulcer in rats

  • Gong, Guojin;Zhao, Rigetu;Zhu, Yuhui;Yu, Jinfeng;Wei, Bin;Xu, Yan;Cui, Zhaoxun;Liang, Guoying
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.403-411
    • /
    • 2021
  • This study was designed to evaluate the gastroprotective activity of cirsilineol in hydrochloric acid (HCl)/ethanol-induced gastric ulcer model. Cirsilineol was administered at the doses of 20 and 40 mg/kg in HCl/ethanol-induced rats. The gastroprotective ability was verified by determining the ulcer score, total acidity, hemoglobin, inflammatory cytokines, lipid peroxides, and enzymatic antioxidants superoxide dismutase (SOD) and catalase (CAT) in gastric tissue and serum biochemical analysis. The results showed a favorable increase in the hemoglobin level, antioxidant enzymes (SOD and CAT), restored electrochemical balance (carbon dioxide & anion gap) while a noticeable decrease in ulcer index, total acidity, lipid peroxides, inflammatory cytokines (interleukin-1 beta [IL-1β], IL-6, and tumor necrosis factor alpha) in rats treated with the cirsilineol. The serum biochemical analysis on liver markers (alkaline phosphatases, alanine aminotransferase, and aspartate aminotransferase), kidney markers (urea, creatinine, albumin, globulin, total protein), and lipid profile (triglyceride, high-density lipoprotein, total cholesterol) were attenuated by cirsilineol treatment in rats. Histopathology showed enhanced gastric protection and preserved the integrity of gastric mucosa upon cirsilineol administration. These results ultimately suggest that cirsilineol has gastroprotective effects that prevent the development of gastric ulcer.

Phytochemical Combination (p-Synephrine, p-Octopamine Hydrochloride, and Hispidulin) for Improving Obesity in Obese Mice Induced by High-Fat Diet

  • Dahae Lee;Ji Hwan Lee;Byoung Ha Kim;Sanghyun Lee;Dong-Wook Kim;Ki Sung Kang
    • Journal of Web Engineering
    • /
    • v.14 no.10
    • /
    • pp.2164-2174
    • /
    • 2022
  • Obesity treatment efficiency can be increased by targeting both central and peripheral pathways. In a previous study, we identified two natural compounds (hispidulin and p-synephrine) that affect adipocyte differentiation. We tested whether obesity treatment efficiency may be improved by adding an appetite-controlling agent to the treatment in the present study. Alkaloids, such as p-octopamine, are adrenergic agonists and are thus used as dietary supplements to achieve weight loss. Here, we assessed anti-obesity effects of a mixture of p-synephrine, p-octopamine HCl, and hispidulin (SOH) on murine preadipocyte cells and on mice receiving a high-fat diet (HFD). SOH showed stronger inhibition of the formation of red-stained lipid droplets than co-treatment with hispidulin and p-synephrine. Moreover, SOH reduced the expression of adipogenic marker proteins, including CCAAT/enhancer-binding protein alpha, CCAAT/enhancer-binding protein beta, and peroxisome proliferator-activated receptor gamma. In the HFD-induced obesity model, body weight and dietary intake were lower in mice treated with SOH than in the controls. Additionally, liver weight and the levels of alanine aminotransferase and total cholesterol were lower in SOH-treated mice than in the controls. In conclusion, our results suggest that consumption of SOH may be a potential alternative strategy to counteract obesity.

Effects of Stocking Density and Lipopolysaccharide on Immune Organ Weights, Blood Biochemical Profiles and the mRNA Expression of Pro-inflammatory Cytokines in Chicks (닭에서 사육밀도 및 Lipopolysaccharide 투여가 면역장기 무게, 혈액 생화학적 성상 및 친염증 사이토카인 mRNA 발현에 미치는 영향)

  • Jang, In-Surk;Song, Min-Hye;Kim, Ha-Na;Moon, Yang Soo;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.43 no.3
    • /
    • pp.149-157
    • /
    • 2016
  • This study was performed to investigate the effects of the stocking density (standard stocking density (SSD, $495cm^2/bird$)) vs. high stocking density (HSD,245cm2/bird) and challenge with lipopolysaccharide (LPS, 5mg/kg BW) on the stress-related physiological indicators in chicks. There was a significant (p<0.05) decrease in body weight, but not in the weight of immune organs, between the SSD and HSD groups. The LPS group resulted in a significant (p<0.05) increase in the weights of the thymus and bursa of fabricius compared with the SSD group. Plasma biochemical components, including aspartate transaminase (AST), alanine transaminase (ALT), blood urea nitrogen, Ca, P, creatine kinase and uric acid, markedly (p<0.05) increased in the LPS birds, although no difference in these parameters was observed between the SSD and HSD birds. Furthermore, the birds challenged with LPS showed a significant (p<0.05) increase in the plasma corticosterone level, although this hormone did not differ between the SSD and HSD groups. In the mRNA expression of pro-inflammatory cytokines, hepatic $IL-1{\beta}$, IL-6 and iNOS in the LPS group significantly (p<0.05) increased compared with those in the SSD group. Thymic mRNA expression of $IL-1{\beta}$, IL-6 and IL-18 in the LPS group also significantly (p<0.05) increased compared with those in the other groups. In addition, mRNA expression of $IL-1{\beta}$ in the bursa of fabricius of the LPS group increased (p<0.05) without affecting the other cytokines. Under high stocking density, thymic $IL-1{\beta}$ was the only cytokine that was up-regulated compared with the SSD group. In conclusion, an acute stress induced by LPS challenge profoundly affected immune organ weight, blood biochemical profiles and pro-inflammatory cytokine expression, while chronic stress did not markedly affect biochemical and immunological parameters, suggesting that chicks under high stocking density could be adapted to prolonged stressors.