• 제목/요약/키워드: ${\ast}-regular ring$

검색결과 3건 처리시간 0.021초

A QUESTION ON ⁎-REGULAR RINGS

  • Cui, Jian;Yin, Xiaobin
    • 대한수학회보
    • /
    • 제55권5호
    • /
    • pp.1333-1338
    • /
    • 2018
  • A ${\ast}-ring$ R is called ${\ast}-regular$ if every principal one-sided ideal of R is generated by a projection. In this note, several characterizations of ${\ast}-regular$ rings are provided. In particular, it is shown that a matrix ring $M_n(R)$ is ${\ast}-regular$ if and only if R is regular and $1+x^*_1x_1+{\cdots}+x^*_{n-1}x_{n-1}$ is a unit for all $x_i$ of R; which answers a question raised in the literature recently.

A STUDY OF LINKED STAR OPERATIONS

  • Paudel, Lokendra;Tchamna, Simplice
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.837-851
    • /
    • 2021
  • Let R ⊆ L ⊆ S be ring extensions. Two star operations ${\ast}_1{\in}Star(R,S)$, ${\ast}_2{\in}Star(L,S)$ are said to be linked if whenever $A^{{\ast}_1}= R^{{\ast}_1}$ for some finitely generated S-regular R-submodule A of S, then $(AL)^{{\ast}_2}=L^{{\ast}_2}$. We study properties of linked star operations; especially when ${\ast}_1$ and ${\ast}_2$ are strict star operations. We introduce the notion of Prüfer star multiplication extension ($P{\ast}ME$) and we show that under appropriate conditions, if the extension R ⊆ S is $P{\ast}_1ME$ and ${\ast}_1$ is linked to ${\ast}_2$, then L ⊆ S is $P{\ast}_2ME$.

A NOTE ON STRONG REDUCEDNESS IN NEAR-RINGS

  • Cho, Yong-Uk
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권4호
    • /
    • pp.199-206
    • /
    • 2003
  • Let N be a right near-ring. N is said to be strongly reduced if, for $a\inN$, $a^2 \in N_{c}$ implies $a\;\in\;N_{c}$, or equivalently, for $a\inN$ and any positive integer n, $a^{n} \in N_{c}$ implies $a\;\in\;N_{c}$, where $N_{c}$ denotes the constant part of N. We will show that strong reducedness is equivalent to condition (ⅱ) of Reddy and Murty's property $(^{\ast})$ (cf. [Reddy & Murty: On strongly regular near-rings. Proc. Edinburgh Math. Soc. (2) 27 (1984), no. 1, 61-64]), and that condition (ⅰ) of Reddy and Murty's property $(^{\ast})$ follows from strong reducedness. Also, we will investigate some characterizations of strongly reduced near-rings and their properties. Using strong reducedness, we characterize left strongly regular near-rings and ($P_{0}$)-near-rings.

  • PDF