• Title/Summary/Keyword: ${\alpha}_{s1}-casein$

Search Result 58, Processing Time 0.025 seconds

The Commercial Value of Goat Milk in Food Industry (산양유의 산업적 이용 가치에 대한 연구 고찰)

  • Jung, Tae-Hwan;Hwang, Hyo-Jeong;Yun, Sung-Seob;Lee, Won-Jae;Kim, Jin-Wook;Shin, Kyung-Ok;Han, Kyoung-Sik
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.173-180
    • /
    • 2016
  • In many countries, goat milk is an excellent nutrient source and is less allergenic for children and the elderly. The casein composition of goat milk consists largely of ${\beta}$-casein and lower amounts of ${\alpha}_{s1}$-casein, which may interfere with digestion by forming solid curds in the human stomach. Goat milk contains small fat globules and large amounts of medium chain fatty acids for, better digestibility, as well as abundant minerals and vitamins with high absorption rates. Recently, the medical benefits of goat milk in different human disorders have been recognized, leading to an increased interest in developing functional foods with goat milk, particularly for individuals with malabsorption syndrome. However, the physiological and biochemical properties of goat milk are largely unknown. We review the importance of goat milk as a potential functional food by providing scientific evidence confirming its health benefits.

Overview of Milk Allergens and Allergic Reaction Reduction Methods (우유 알레르기의 특성 및 저감화 방법에 대한 고찰)

  • Kim, Ki-Hwan;Seol, Kuk-Hwan;Oh, Mi-Hwa;Park, Beam Young;Kim, Hyoun Wook
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.67-73
    • /
    • 2013
  • Food allergy is defined as adverse reactions toward food mediated by aberrant immune mechanisms. Cow's milk allergy is one of the most common food allergies in childhood. This allergy is normally outgrown in the first year of life, however 15% of allergic children remain allergic. Cow's milk allergy seem to be associated with casein (${\alpha}_{s1}$-CN), ${\beta}$-lactoglobulin and whey protein. In addition to this, many other milk proteins are antigenic and capable of inducing immune responses. Various food processing affects the stability, structure and intermolecular interactions of cow milk proteins, as a result reduction the allergenic capacity. Heating, hydrolysis, chemical, proteolytic and other processes such as gamma-ray irradiation, high pressure, using probiotics treatments of milk to obtain hypoallergenic milk have been developed to reduce allergic reactions.

  • PDF

Enhanced Production of Galactooligosaccharides Enriched Skim Milk and Applied to Potentially Synbiotic Fermented Milk with Lactobacillus rhamnosus 4B15

  • Oh, Nam Su;Kim, Kyeongmu;Oh, Sangnam;Kim, Younghoon
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.725-741
    • /
    • 2019
  • In the current study, we first investigated a method for directly transforming lactose into galacto-oligosaccharides (GOS) for manufacturing low-lactose and GOS-enriched skim milk (GSM) and then evaluated its prebiotic potential by inoculating five strains of Bifidobacterium spp. In addition, fermented GSM (FGSM) was prepared using a potentially probiotic Lactobacillus strain and its fermentation characteristics and antioxidant capacities were determined. We found that GOS in GSM were metabolized by all five Bifidobacterium strains after incubation and promoted their growth. The levels of antioxidant activities including radical scavenging activities and 3-hydroxy-3-methylglutaryl-CoA reductase inhibition rate in GSM were significantly increased by fermentation with the probiotic Lactobacillus strain. Moreover, thirty-nine featured peptides in FGSM was detected. In particular, six peptides derived from ${\beta}$-casein, two peptides originated from ${\alpha}s_1$-casein and ${\kappa}$-casein were newly identified, respectively. Our findings indicate that GSM can potentially be used as a prebiotic substrate and FGSM can potentially prevent oxidative stress during the production of synbiotic fermented milk in the food industry.

Somatic cell score: gene polymorphisms and other effects in Holstein and Simmental cows

  • Citek, Jindrich;Brzakova, Michaela;Hanusova, Lenka;Hanus, Oto;Vecerek, Libor;Samkova, Eva;Jozova, Eva;Hostickova, Irena;Travnicek, Jan;Klojda, Martin;Hasonova, Lucie
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Objective: The aim of the study was to evaluate the influence of gene polymorphisms and nongenetic factors on the somatic cell score (SCS) in the milk of Holstein (n = 148) and Simmental (n = 73) cows and their crosses (n = 6). Methods: The SCS was calculated by the formula SCS = log2(SCC/100,000)+3, where SCC is the somatic cell count. Polymorphisms in the casein alpha S1 (CSN1S1), beta-casein (CSN2), kappa-casein (CSN3), beta-lactoglobulin (LGB), acyl-CoA diacylglycerol transferase 1 (DGAT1), leptin (LEP), fatty acid synthase (FASN), stearoyl CoA desaturase 1 (SCD1), and 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6) genes were genotyped, and association analysis to the SCS in the cow's milk was performed. Further, the impact of breed, farm, year, month of the year, lactation stage and parity on the SCS were analysed. Phenotype correlations among SCS and milk constituents were computed by Pearson correlation coefficients. Results: Only CSN2 genotypes A1/A2 were found to have significant association with the SCS (p<0.05), and alleles of CSN1S1 and DGAT1 genes (p<0.05). Other polymorphisms were not found to be significant. SCS had significant association with the combined effect of farm and year, lactation stage and month of the year. Lactation parity and breed had not significant association with SCS. The phenotypic correlation of SCS to lactose content was negative and significant, while the correlation to protein content was positive and significant. The correlations of SCS to fat, casein, nonfat solids, urea, citric acid, acetone and ketones contents were very low and not significant. Conclusion: Only CSN2 genotypes, CSN1S1 and DGAT1 alleles did show an obvious association to the SCS. The results confirmed the importance of general quality management of farms on the microbial milk quality, and effects of lactation stage and month of the year. The lactose content in milk reflects the health status of the udder.

Quality Properties of Appenzeller Cheese Containing Green Tea Powder (녹차 첨가 아펜젤러 치즈의 품질 특성)

  • Choi, Hee-Young;Choi, Hyo-Ju;Yang, Chul-Ju;Lee, Sang-Suk;Choi, Gap-Sung;Park, Jeong-Ro;Chun, Sun-Sil;Shin, Hyon-Jung;Jeong, Seok-Geun;Bae, In-Hyu
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.7-16
    • /
    • 2009
  • Appenzeller cheese samples were prepared by addition of 0.5, 1.0, and 2.0% green tea (Camellia sinensis, CS) powder and control cheese. We examined various quality characteristics of the novel cheese, such as viable-cell counts, pH, water-soluble nitrogen (WSN), non-casein nitrogen (NCN), non-protein nitrogen (NPN), and catechin level during maturation for 16 weeks at $14^{\circ}C$. To develop a Korean natural cheese containing green tea powder, we also analyzed the changes in the polyacrylamide gel electrophoresis pattern, chemical composition, and sensory qualities. The viable cell counts of the samples were not significantly different. Until the $3^{rd}$ week, the pH of the CS cheese decreased with an increase in the maturation time. However, the pH gradually increased by the $12^{th}$ week, while WSN, NCN, NPN also increased. The WSN, NCN, NPN, and catechin values for the CS cheese samples were significantly higher than the values for the control cheese. The polyacrylamide gel electrophoretic pattern of caseins for the CS cheese indicated that this cheese degraded more rapidly than the control cheese did. In the sensory evaluation, cheese with 1.0% CS powder showed the highest scores in taste and appearance and good scores in flavor and texture. These results indicate that 1.0% CS is the optimal value for addition to cheese, and cheese containing 1.0% CS shows good physiological properties and reasonably high overall sensory acceptability.

  • PDF

Effect of Defined KSOM Medium on the Development of 1-antitrypsin Transgenic Nuclear Transfer Bovine Embryos

  • M.M.U. Bhuiyan;J.K. Cho;G. Jang;Park, E.S.;S.K. Kang;Lee, B.C.;W.S. Hwang
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.74-74
    • /
    • 2002
  • Production of u 1-antitrypsin ($\alpha$AT) in transgenic cows has a great value in the field of medicine. The present study was conducted to determine the effect of chemically defined KSOM media on in vitro development of bovine transgenic nuclear transfer (NT) embryos. An expression plasmid for human $\alpha$AT was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and a human $\alpha$AT target gene into a pcDNA3 plasmid. Cumulus cells as donor nuclei in NT were collected from a Holstein cow and transfected by lipid-mediated method using FuGene6 (Roche Molecular Biochemicals, USA) as reagent. GFP expressed cumulus cells were introduced into recipient oocytes under DIC microscopy equipped with FITC filter set. After electrical fusion and chemical activation, reconstructed embryos were cultured in 1) SOF + 0.8% BSA, 2) KSOM + 0.8% BSA, 3) KSOM + 10% FBS and 4) KSOM +0.01% PVA for 192 h at 39$^{\circ}C$ with 5% $CO_2$, 5% $O_2$ and 90% $N_2$in humidified condition. The development of the embryos was recorded and the GFP expression in blastocyst was determined under FITC filter. The average fusion rate was 73.8% (251/340; n=8). The development rates to 2-4 cells, morula, blastocysts and expression rates in blastocysts varied from 70.3 to 76.5%, 30.2 to 33.8%, 25.4 to 33.8% and 11.8 to 15.6%, respectively. The difference in development and expression rates of embryos among 4 culture groups was not significant (P>0.05). This study indicates that chemically defined KSOM medium is also able to support development of bovine transgenic NT embryos at similar rate of SOF or KSOM supplemented with BSA or serum.

  • PDF

Effects of Saturated Long-chain Fatty Acid on mRNA Expression of Genes Associated with Milk Fat and Protein Biosynthesis in Bovine Mammary Epithelial Cells

  • Qi, Lizhi;Yan, Sumei;Sheng, Ran;Zhao, Yanli;Guo, Xiaoyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.414-421
    • /
    • 2014
  • This study was conducted to determine the effects of saturated long-chain fatty acids (LCFA) on cell proliferation and triacylglycerol (TAG) content, as well as mRNA expression of ${\alpha}s1$-casein (CSN1S1) and genes associated with lipid and protein synthesis in bovine mammary epithelial cells (BMECs). Primary cells were isolated from the mammary glands of Holstein dairy cows, and were passaged twice. Then cells were cultured with different levels of palmitate or stearate (0, 200, 300, 400, 500, and 600 ${\mu}M$) for 48 h and fetal bovine serum in the culture solution was replaced with fatty acid-free BSA (1 g/L). The results showed that cell proliferation tended to be increased quadratically with increasing addition of stearate. Treatments with palmitate or stearate induced an increase in TAG contents at 0 to 600 ${\mu}M$ in a concentration-dependent manner, and the addition of 600 ${\mu}M$ was less effective in improving TAG accumulation. The expression of acetyl-coenzyme A carboxylase alpha, fatty acid synthase and fatty acid-binding protein 3 was inhibited when palmitate or stearate were added in culture medium, whereas cluster of differentiation 36 and CSN1S1 mRNA abundance was increased in a concentration-dependent manner. The mRNA expressions of peroxisome proliferator-activated receptor gamma, mammalian target of rapamycin and signal transducer and activator of transcription 5 with palmitate or stearate had no significant differences relative to the control. These results implied that certain concentrations of saturated LCFA could stimulate cell proliferation and the accumulation of TAG, whereas a reduction may occur with the addition of an overdose of saturated LCFA. Saturated LCFA could up-regulate CSN1S1 mRNA abundance, but further studies are necessary to elucidate the mechanism for regulating milk fat and protein synthesis.

Studies on the Taste of Korean for Cheese (한국인(韓國人)의 치이즈 기호성(嗜好性)에 관한 연구)

  • Kim, Jong Woo;Ko, Keun Hag
    • Korean Journal of Agricultural Science
    • /
    • v.18 no.1
    • /
    • pp.21-32
    • /
    • 1991
  • This experiment was carried out to examine sensory testing for Mozzarella cheese, process cheese, Cheddar cheese and Cheddar cheese made with red pepper, garlic, ginger and welsh onion to develop new cheese varieties which can be prefered by Korean. The chemical composition and sensory testing of cheese were measured. The results were summarized as follows ; 1. Total nitrogen percentages in Cheddar cheese and spiced Cheddar cheeses were similar but those in process cheese and Mozzarella cheese were low. 5% NaCl soluble nitrogen percentages were highest in Cheddar cheese. 5% NaCl soluble nitrogen percentages in each cheese were different. Ripening degree, water soluble nitrogen, TCA soluble nitrogen and SSA soluble nitrogen percentages in each cheese were similiar level. 2. Spiced Cheddar cheeses were more breakdown than other cheese and ${\alpha}_s$-casein breakdowns faster than $\beta$-casein. 3. In the result of sensory evaluation, color score was high in Mozzarella cheese and process cheese. The color score of Cheddar cheese was high in 30's-40's and 50's- 50's. The color score of 10's and 20's was high in Cheddar cheese made with garlic. 4. Odor score was high in Mozzarella cheese and process cheese, too. The odor score of Spiced Cheddar cheeses was high in 10's. 5. Texture score was high in Mozzarella cheese, process cheese and Cheddar cheese. 6. Teste score was high in Mozzarella cheese, process cheese and Cheddar cheese. The taste score of spiced Cheddar cheese was higher in 10's and 20's than that in 30's-40's and 50's-50's.

  • PDF

INHIBITORY EFFECT OF THE IONOPHORE SALINOMYCIN ON DEAMINATION BY MIXED RUMEN BACTERIA

  • Kobayashi, Y.;Suda, K.;Wakita, M.;Baran, M.;Hoshino, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.1
    • /
    • pp.45-49
    • /
    • 1996
  • A series of in vitro experiments was conducted to investigate response of rumen bacterial deamination to the ionophore salinomycin. Addition of salinomycin to the inoculum, strained rumen fluid, depressed ammonia production from casein, while increased accumulation of ${\alpha}$-amino acids. This suggests an inhibitory effect of salinomycin on ruminal deamination. When the effect in washed bacterial suspension was monitored with individual amino acid, aspartic acid degradation was markedly inhibited by salinomycin. This inhibition was not observed when the mixed rumen bacteria were ultrasonically disrupted and used as the enzyme source. Extent of the inhibition tended to be higher in the bacteria source from sheep on a high roughage diet. From these results it was speculated that the inhibition of deamination with salinomycin is caused by a decreased transport of amino acid into the bacterial cells as well as a decreased proportion of deaminating bacteria in the rumen.

Cultural Characteristics of Lactobacillus amylovorus IMC-1 Producing Antibacterial Substance (항균성 물질을 생산하는 Lactobacillus amylovorus IMC-1의 배양학적 특성)

  • Mok, Jong-Soo;Song, Ki-Cheol;Kim, Young-Mog;Chang, Dong-Suck
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.249-254
    • /
    • 2002
  • To determine the abilities as both lactic starter and probiotics for fermented foods, we investigated the potency of acid production, proteolytic activity and lactose metabolism of Lactobacillus amylovorus IMC-1. And the strain was cultured with lactococci in 10% skim milk medium. It was also examined the bactericidal action of antibacterial substance, produced by the strain IMC-1, against pathogenic bacteria. L. amylovorus IMC-1 showed excellent production of acid in 10% skim milk supplemented with yeast extract, and produced 0.8 and 2.7% of acid at 12 and 72 h incubation, respectively. It was found that the activity of ${\beta}-galactosidase$, about $39\;{\mu}M/minute/dry$ cell weight (mg), was stronger than that of $phospho-{\beta}-galactosidase$ in the strain IMC-1. The strain showed weak proteolytic activity in 10% skim milk, thus it produced 6 and $69\;{\mu}g/mL$ of free tyrosine at 12 and 72 h cultivation, respectively. It was known that the strain utilized mainly ${\alpha}-casein$ than ${\beta}-casein$ from patterns of SDS-PAGE. Mixed culture produced more acid than single cultures of L. amylovorus IMC-1 and Streptococcus thermophilus NIAI 510. Single culture of Str. thermophilus and mixed culture showed increasing cheese flavor with incubation times. Optimal fermentation time of mixed culture for the acid production and flora of lactic starter was 16 and 12 h by adding 0.1 and 0.5% of yeast extract to 10% skim milk, respectively. Antibacterial substance produced by the strain IMC-1 reduced about 2 log of the viable cell counts of both Escherichia coli O157 and Shigella flexneri after 24 and 4 h incubation, and they were not detected after 48 and 6 h incubation, respectively.