• Title/Summary/Keyword: ${\alpha}1,3$-Galactosyltransferase gene

Search Result 14, Processing Time 0.033 seconds

Knock-in Somatic Cells of Human Decay Accelerating Factor and α1,2-Fucosyltransferase Gene on the α1,3-Galactosyltransferase Gene Locus of Miniature Pig (α1,3-Galactosyltransferase 유전자 위치에 사람 Decay Accelerating Factor와 α1,2-Fucosyltransferase 유전자가 Knock-in된 미니돼지 체세포)

  • Kim, Ji Woo;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.39 no.3
    • /
    • pp.59-67
    • /
    • 2015
  • Galactose-${\alpha}1,3$-galactose (${\alpha}1,3$-Gal) epitope is synthesized at a high concentration on the surface of pig cells by ${\alpha}1,3$-galactosyltransferase gene (GGTA1). The ${\alpha}1,3$-Gal is responsible for hyperacute rejection in pig-to-human xenotransplantation. The generation of transgenic pigs as organ donors for humans is necessary to eliminate the GGTA1 gene that synthesize $Gal{\alpha}$(1,3)Gal. To prevent hyperacute graft rejection in pig-to-human xenotransplantation, previously, we developed ${\alpha}1,3$-galactosyltransferase gene-knock-out somatic cell by homologous recombination. In this study, we established cell lines of ${\alpha}1,3$-GT knock-out expressing hDAF and hHT gene from minipig fibroblasts to apply somatic cell nuclear transfer. The hDAF and hHT mRNA were expressed in the knock-in somatic cells and ${\alpha}1,3$-GT mRNA was suppressed. However, the knock-in somatic cells were increased resistance to human serum-mediated cytolysis.

Alpha 1,3-Galactosyltransferase Deficiency in Miniature Pigs Increases Non-Gal Xenoantigens

  • Min, Gye-Sik;Park, Jong-Yi
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.511-518
    • /
    • 2011
  • To avoid hyperacute rejection of xenografts, ${\alpha}1,3$-galactosyltransferase knock-out (GalT KO) pigs have been produced. In this study, we examined whether Sia-containing glycoconjugates are important as an immunogenic non-Gal epitope in the pig liver with disruption of ${\alpha}1,3$-galactosyltransferase gene. The target cells were then used as donor cells for somatic cell nuclear transfer (scNT). A total of 1,800 scNT embryos were transferred to 10 recipients. One recipient developed to term and naturally delivered two piglets. Real-time RT-PCR and glycosyltransferase activity showed that ${\alpha}2,3$-sialyltransferase (${\alpha}2,3ST$) and ${\alpha}2,6$-sialyltransferase (${\alpha}2,6ST$) in the heterozygote GalT KO liver have higher expression levels and activities compared to controls, respectively. According to lectin blotting, sialic acidcontaining glycoconjugate epitopes were also increased due to the decreasing of ${\alpha}$-Gal in heterozygote GalT KO liver, whereas GalNAc-containing glycoconjugate epitopes were decreased in heterozygote GalT KO liver compare to the control. Furthermore, the heterozygote GalT KO liver showed a higher Neu5Gc content than control. Taken together, these finding suggested that the deficiency of GalT gene in pigs resulted in increased production of Neu5Gc-bounded epitopes (H-D antigen) due to increase of ${\alpha}2,6$-sialyltransferase. Thus, this finding suggested that the deletion of CMAH gene to the GalT KO background is expected to further prolong xenograft survival.

Developmental Characteristics of SCNT Pig Embryos Knocked-out of Alpha-1,3-Galactosyltransferase Gene

  • Shim, Joo-Hyun;Park, Mi-Rung;Yang, Byoung-Chul;Ko, Yeoung-Gyu;Oh, Keon-Bong;Lee, Jeong-Woong;Woo, Jae-Seok;Park, Eung-Woo;Park, Soo-Bong;Hwang, Seong-Soo
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.157-162
    • /
    • 2009
  • This study was performed to comprehend the developmental characteristics of cloned embryos knocked out (KO) of $\alpha$-1,3-galactosyltransferase (GalT) gene. Immature oocytes were collected and cultured for 40 hrs (1-step) or 20hrs (with hormone) + 20hrs (without hormone) (2-step). The embryos transferred with miniature pig ear fibroblast cell were used as control. The reconstructed embryos were cultured in PZM-3 with 5% $CO_2$ in air at $38.5^{\circ}C$ for 6 days. To determine the quality of the blstocysts, TUNEL and quantitative realtime RT-PCR were performed. The embryos were transferred to a surrogate (Landrace) at an earlier stage of the estrus cycle. The maturation rate was significantly higher in 2-step method than that of 1-step (p<0.05). The blastocyst development of GalT KO embryos was significantly lower than that of normal cloned embryos (p<0.05). The total and apoptotic cell number of GalT KO blastocysts was not different statistically from control. The relative abundance of Bax-$\alpha$/Bcl-xl ratio was significantly higher in both cloned blastocysts than that of in vivo blastocysts (p<0.05). Taken together, it can be postulated that the lower developmental potential and higher expression of apoptosis related genes in GalT KO SCNT embryos might be a cause of a low efficiency of GalT KO cloned miniature pig production.

Porcine Knock-in Fibroblasts Expressing hDAF on α-1,3-Galactosyltransferase (GGTA1) Gene Locus

  • Kim, Ji-Woo;Kim, Hye-Min;Lee, Sang-Mi;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1473-1480
    • /
    • 2012
  • The Galactose-${\alpha}1$,3-galactose (${\alpha}1$,3Gal) epitope is responsible for hyperacute rejection in pig-to-human xenotransplantation. Human decay-accelerating factor (hDAF) is a cell surface regulatory protein that serves as a complement inhibitor to protect self cells from complement attack. The generation of ${\alpha}1$,3-galactosyltransferase (GGTA1) knock-out pigs expressing DAF is a necessary step for their use as organ donors for humans. In this study, we established GGTA1 knock-out cell lines expressing DAF from pig ear fibroblasts for somatic cell nuclear transfer. hDAF expression was detected in hDAF knock-in heterozygous cells, but not in normal pig cells. Expression of the GGTA1 gene was lower in the knock-in heterozygous cell line compared to the normal pig cell. Knock-in heterozygous cells afforded more effective protection against cytotoxicity with human serum than with GGTA1 knock-out heterozygous and control cells. These cell lines may be used in the production of GGTA1 knock-out and DAF expression pigs for xenotransplantation.

Efficient Gene Targeting using Nuclear Localization Signal (NLS) and Negative Selection Marker Gene in Porcine Somatic Cells

  • Kim, Hye Min;Lee, Sang Mi;Park, Hyo Young;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.38 no.2
    • /
    • pp.71-77
    • /
    • 2014
  • The specific genetic modification in porcine somatic cells by gene targeting has been very difficult because of low efficiency of homologous recombination. To improve gene targeting, we designed three kinds of knock-out vectors with ${\alpha}1,3$-galactosyltransferase gene (${\alpha}1,3$-GT gene), DT-A/pGT5'/neo/pGT3', DT-A/NLS/pGT5'/neo/pGT3' and pGT5'/neo/ pGT3'/NLS. The knock-out vectors consisted of a 4.8-kb fragment as the 5' recombination arm (pGT5') and a 1.9-kb fragment as the 3' recombination arm (pGT3'). We used the neomycin resistance gene (neo) as a positive selectable marker and the diphtheria toxin A (DT-A) gene as a negative selectable marker. These vectors have a neo gene insertion in exon 9 for inactivation of ${\alpha}1,3$-GT locus. DT-A/pGT5'/neo/pGT3' vector contain only positive-negative selection marker with conventional targeting vector. DT-A/NLS/pGT5'/neo/pGT3' vector contain positive-negative selection marker and NLS sequences in upstream of 5' recombination arm which enhances nuclear transport of foreign DNA into bovine somatic cells. pGT5'/neo/pGT3'/NLS vector contain only positive selection marker and NLS sequence in downstream of 3' recombination arm, not contain negative selectable marker. For transfection, linearzed vectors were introduced into porcine ear fibroblasts by electroporation. After 48 hours, the transfected cells were selected with $300{\mu}g/ml$ G418 during 12 day. The G418-resistant colonies were picked, of which 5 colonies were positive for ${\alpha}1,3$-GT gene disruption in 3' PCR and southern blot screening. Three knock-out somatic cells were obtained from DT-A/NLS/ pGT5'/neo/pGT3' knock-out vector. Thus, these data indicate that gene targeting vector using nuclear localization signal and negative selection marker improve targeting efficiency in porcine somatic cells.

Alpha-1,3-galactosyltransferase-deficient miniature pigs produced by serial cloning using neonatal skin fibroblasts with loss of heterozygosity

  • Kim, Young June;Ahn, Kwang Sung;Kim, Minjeong;Kim, Min Ju;Ahn, Jin Seop;Ryu, Junghyun;Heo, Soon Young;Park, Sang-Min;Kang, Jee Hyun;Choi, You Jung;Shim, Hosup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.439-445
    • /
    • 2017
  • Objective: Production of alpha-1,3-galactosyltransferase (${\alpha}GT$)-deficient pigs is essential to overcome xenograft rejection in pig-to-human xenotransplantation. However, the production of such pigs requires a great deal of cost, time, and labor. Heterozygous ${\alpha}GT$ knockout pigs should be bred at least for two generations to ultimately obtain homozygote progenies. The present study was conducted to produce ${\alpha}GT$-deficient miniature pigs in much reduced time using mitotic recombination in neonatal ear skin fibroblasts. Methods: Miniature pig fibroblasts were transfected with ${\alpha}GT$ gene-targeting vector. Resulting gene-targeted fibroblasts were used for nuclear transfer (NT) to produce heterozygous ${\alpha}GT$ gene-targeted piglets. Fibroblasts isolated from ear skin biopsies of these piglets were cultured for 6 to 8 passages to induce loss of heterozygosity (LOH) and treated with biotin-conjugated IB4 that binds to galactose-${\alpha}$-1,3-galactose, an epitope produced by ${\alpha}GT$. Using magnetic activated cell sorting, cells with monoallelic disruption of ${\alpha}GT$ were removed. Remaining cells with LOH carrying biallelic disruption of ${\alpha}GT$ were used for the second round NT to produce homozygous ${\alpha}GT$ gene-targeted piglets. Results: Monoallelic mutation of ${\alpha}GT$ gene was confirmed by polymerase chain reaction in fibroblasts. Using these cells as nuclear donors, three heterozygous ${\alpha}GT$ gene-targeted piglets were produced by NT. Fibroblasts were collected from ear skin biopsies of these piglets, and homozygosity was induced by LOH. The second round NT using these fibroblasts resulted in production of three homozygous ${\alpha}GT$ knockout piglets. Conclusion: The present study demonstrates that the time required for the production of ${\alpha}GT$-deficient miniature pigs could be reduced significantly by postnatal skin biopsies and subsequent selection of mitotic recombinants. Such procedure may be beneficial for the production of homozygote knockout animals, especially in species, such as pigs, that require a substantial length of time for breeding.

Production of ${\alpha}$1,3-Galactosyltransferase (GalT) Double Knock-out (-/-) Transgenic Pigs for Xenotransplantation (${\alpha}$1,3-Galactosyltransferase(GalT) 유전자가 완전 Knock-out(-/-)된 바이오장기용 형질 전환 돼지 생산)

  • Hwang, Seong-Soo;Oh, Keun-Bong;Kim, Dong-Hoon;Woo, Jea-Seok;Shim, Ho-Sup;Yun, Ik-Jin;Park, Jin-Ki;Im, Gi-Sun
    • Journal of Embryo Transfer
    • /
    • v.27 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • This study was conducted to analyze the transgenic efficiency and sex ratio in ${\alpha}$-1,3-galactosyltransferase (GalT) knock-out (KO) transgenic pigs according to generation. GalT KO piglets were produced by artificial insemination or natural mating. The transgenic confirmation of GalT KO was evaluated by PCR amplification using specific primers. After electrophoresis, three types of bands were detected such as 2.3 kb single band (Wild), 2.3 and 3.6kb double bands (GalT KO -/+; heterozygote), and 3.6kb single band (GalT KO -/-; homozygote). Transgenic efficiency in F1 generation was 64.5% (23/35) of GalT KO (-/+). In F2 generation, GalT KO transgenic efficiency was 36.4% (21/57, Wild), 47.5% (28/57, GalT KO -/+), and 16.1% (8/57, GalT KO -/-), respectively. Interestingly, no homozygote piglets were born in 6 deliveries among total 11 deliveries, although they were pregnant between male (M) and female (F) $F_1$ heterozygote. In the 5 litters including at least one GalT KO -/- piglet, the transgenic efficiency was 13.3% (2/24, Wild), 51.3% (14/24, GalT KO -/+), and 35.3% (8/24, GalT KO -/-), respectively. The sex ratio of M and F was 40:60 in $F_1$ and 49:51 in $F_2$ generation, respectively. Based on these results, GalT KO transgenic pigs have had a reproductive ability with a normal range of transgenic efficiency and sex ratio.

Comparative N-Linked Glycan Analysis of Wild-Type and α1,3-Galactosyltransferase Gene Knock-Out Pig Fibroblasts Using Mass Spectrometry Approaches

  • Park, Hae-Min;Kim, Yoon-Woo;Kim, Kyoung-Jin;Kim, Young June;Yang, Yung-Hun;Jin, Jang Mi;Kim, Young Hwan;Kim, Byung-Gee;Shim, Hosup;Kim, Yun-Gon
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.65-74
    • /
    • 2015
  • Carbohydrate antigens expressed on pig cells are considered to be major barriers in pig-to-human xenotransplantation. Even after ${\alpha}1,3$-galactosyltransferase gene knock-out (GalT-KO) pigs are generated, potential non-Gal antigens are still existed. However, to the best of our knowledge there is no extensive study analyzing N-glycans expressed on the GalT-KO pig tissues or cells. Here, we identified and quantified totally 47 N-glycans from wild-type (WT) and GalT-KO pig fibroblasts using mass spectrometry. First, our results confirmed the absence of galactose-alpha-1,3-galactose (${\alpha}$-Gal) residue in the GalT-KO pig cells. Interestingly, we showed that the level of overall fucosylated N-glycans from GalT-KO pig fibroblasts is much higher than from WT pig fibroblasts. Moreover, the relative quantity of the N-glycolylneuraminic acid (NeuGc) antigen is slightly higher in the GalT-KO pigs. Thus, this study will contribute to a better understanding of cellular glycan alterations on GalT-KO pigs for successful xenotransplantation.

Lactosylceramide Mediates the Expression of Adhesion Molecules in TNF-${\alpha}$ and IFN ${\gamma}$-stimulated Primary Cultured Astrocytes

  • Lee, Jin-Koo;Kim, Jin-Kyu;Park, Soo-Hyun;Sim, Yun-Beom;Jung, Jun-Sub;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.251-258
    • /
    • 2011
  • Here we have investigated how lactosylceramide (LacCer) modulates gene expression of adhesion molecules in TNF-${\alpha}$ and IFN ${\gamma}$ (CM)-stimulated astrocytes. We have observed that stimulation of astrocytes with CM increased the gene expression of ICAM-1 and VCAM-1. D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and N-butyldeoxynojirimycin (NBDNJ), inhibitors of glucosylceramide synthase (GLS) and LacCer synthase (galactosyltransferase, GalT-2), inhibited the gene expression of ICAM-1 and VCAM-1 and activation of their gene promoter induced by CM, which were reversed by exogenously supplied LacCer. Silencing of GalT-2 gene using its antisense oligonucleotides also attenuated CM-induced ICAM-1 and VCAM-1 expression, which were reversed by LacCer. PDMP treatment and silencing of GalT-2 gene significantly reduced CM-induced luciferase activities in NF-${\kappa}B$, AP-1, GAS, and STAT-3 luciferase vectors-transfected cells. In addition, LacCer reversed the inhibition of NF-${\kappa}B$ and STAT-1 luciferase activities by PDMP. Taken together, our results suggest that LacCer may play a crucial role in the expression of ICAM-1 and VCAM-1 via modulating transcription factors, such as NF-${\kappa}B$, AP-1, STAT-1, and STAT-3 in CM-stimulated astrocytes.

Transdifferentiation of α-1,3-Galactosyltransferase Knock Out (GalT KO) Pig Derived Bone Marrow Mesenchymal Stromal Cells (BM-MSCs) into Pancreatic Cells by Transfection of hPDX1 (hPDX1 유전자의 삽입에 의한 직접 췌도세포 분화)

  • Ock, Sun A;Oh, Keon Bong;Hwang, Seongsoo;Kim, Youngim;Kwon, Dae-Jin;Im, Gi-Sun
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.249-255
    • /
    • 2015
  • Diabetes mellitus, the most common metabolic disorder, is divided into two types: type 1 and type 2. The essential treatment of type 1 diabetes, caused by immune-mediated destruction of ${\beta}-cells$, is transplantation of the pancreas; however, this treatment is limited by issues such as the lack of donors for islet transplantation and immune rejection. As an alternative approach, stem cell therapy has been used as a new tool. The present study revealed that bone marrowderived mesenchymal stromal cells (BM-MSCs) could be transdifferentiated into pancreatic cells by the insertion of a key gene for embryonic development of the pancreas, the pancreatic and duodenal homeobox factor 1 (PDX1). To avoid immune rejection associated with xenotransplantation and to develop a new cell-based treatment, BM-MSCs from ${\alpha}$-1,3-galactosyltransferase knockout (GalT KO) pigs were used as the source of the cells. Transfection of the EGFP-hPDX1 gene into GalT KO pig-derived BM-MSCs was performed by electroporation. Cells were evaluated for hPDX1 expression by immunofluorescence and RT-PCR. Transdifferentiation into pancreatic cells was confirmed by morphological transformation, immunofluorescence, and endogenous pPDX1 gene expression. At 3~4 weeks after transduction, cell morphology changed from spindle-like shape to round shape, similar to that observed in cuboidal epithelium expressing EGFP. Results of RT-PCR confirmed the expression of both exogenous hPDX1 and endogenous pPDX1. Therefore, GalT KO pig-derived BM-MSCs transdifferentiated into pancreatic cells by transfection of hPDX1. The present results are indicative of the therapeutic potential of PDX1-expressing GalT KO pig-derived BM-MSCs in ${\beta}-cell$ replacement. This potential needs to be explored further by using in vivo studies to confirm these findings.