• Title/Summary/Keyword: ${\alpha}-linolenic\

Search Result 181, Processing Time 0.022 seconds

Processing Flaxseed for Food and Feed Uses

  • Wiesenborn, Dennis;Tostenson, Kristi;Kangas, Nancy;Zheng, Yun-Ling;Hall III, Clifford;Niehaus, Mary;Jarvis, Paul;Schwarz, Jurgen;Twombly, Wesley
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.305-310
    • /
    • 2005
  • Flaxseed is outstanding for lignans and oil rich in ${\alpha}$-linolenic acid which protect against several major illnesses. Better understanding of processing and storage characteristics of flaxseed will increase options for food use. Lignans and oil are found in the hull and embryo, respectively. Comparison of pearling and impact-dehulling processes for separation of lignan and oil-rich fractions showed the impact process was less effective, but easier to scale-up. Screw-pressing embryo reduced oil yield compared to whole seed, but doubled productivity and sharply reduced frictional heating of the oil. Flaxseed hull and embryo, also whole, ground and steamed-ground samples, were stable up to 30 weeks in closed containers at $23^{\circ}C$. Steamed-ground samples in open trays at $40^{\circ}C$ deteriorated markedly (peroxide value > 100 by 22 weeks); yet, whole seed remained stable. Incorporation of 18% flaxseed embryo into yellow perch feed increased ${\alpha}$-linolenic acid to 13 to l4% of muscle and liver lipids, compared to 0.5 to 0.7% in the no-embryo control. Feed conversion ratio, weight gain, and survival were similar. These studies are helping to establish the technological base for processing and utilizing flaxseed and flaxseed fractions to improve human diets.

Plasma Lipid-Lowering Effect of n6 and n3 Polyunsaturated Fatty Acids in Rats Fed High Carbohydrate Diet (고당질 식이시 n6 와 n3 불포화 지방산이 쥐의 혈장지질 저하기전에 미치는 영향)

  • 남정혜;박현서
    • Journal of Nutrition and Health
    • /
    • v.24 no.5
    • /
    • pp.420-430
    • /
    • 1991
  • To compare the hypolipidemic effects of n6 linoleic acid. n3 $\alpha$-linolenic acid and n3 eicosapentaenoic acid in rats fed high carbohydrate(70% Cal) diet. male Sprague Dawley rats were fed different experimental diets for 6 weeks. which were different only in fatty acid composition. The dietary fats were beer tallow(BT) as a source of saturated fatty acid (SFA), corn oil(CO) for n6 linoleic acid(LA), perilla oil(PO) for n3 $\alpha$-linolenic acid(LL) and fish oil(FO) for n3 eicosapentaenoic acid(EPA) and docosahexaenoic acid (DHA) Plasma total cholesterol(Chol) level was increased by n6 LA but decreased by n3 LL and n3 EPA and most effectively reduced by n3 EPA. HDL-Chol level was raised by n6 LA, but there was no significant change in HDL-Chol levels by n3 LL and was lowered by n3 EPA. Plasma TG level was reduced by n6 LA, but lipogenesis in liver was not affected by n6 LA. However, plasma TG level was lowered by n3 LL and EPA. Both lipogenic enzyme activity and liver TC level were also decreased by n3 PUFA. The relative proportions of TG in VLDL was significantly lowered by n3 EPA. but the proportions of Apo B in VLDL was not changed by n3 EPA. Overall. the hypolipidemic effect was in the order of EPA+ DHA(n3) >LL(n3) >LA(n6) and fish oil and perilla oil rich in n3 PUFA may have important nutritional applications in the prevention and treatment of hypertriglyceridemia.

  • PDF

Effect of Alpha-Linolenic Acid with Bovine Serum Albumin or Methyl-Beta-Cyclodextrin on Membrane Integrity and Oxidative Stress of Frozen-Thawed Boar Sperm

  • Lee, Won-Hee;Kim, Wook-Hwan;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Development and Reproduction
    • /
    • v.23 no.1
    • /
    • pp.11-19
    • /
    • 2019
  • The study was conducted to investigate the effects of alpha-linolenic acid (ALA) combined with bovine serum albumin (BSA) or methyl-beta-cyclodextrin (MBCD) on plasma and acrosomal membrane damages, mitochondrial activity, morphological abnormality, motility, and oxidative stress in frozen-thawed boar sperm. In previous our study, 3 ng/mL ALA had been shown protective effect during freezing process of boar sperm. Therefore, we used 3 ng/mL ALA in present study and ALA was combined with same molar ratio of BSA or MBCD (ALA+BSA and ALA+MBCD, respectively). To confirm the effect of two carrier proteins, same volume of BSA and MBCD without ALA were added during cryopreservation. Membrane damage, mitochondrial activity, reactive oxygen species (ROS) and lipid peroxidation (LPO) levels were measured using flow cytometry, and movement of sperm tail as motility parameter and morphological abnormality were observed under light microscope. In results, all of sperm parameters were enhanced by ALA combined with BSA or MBCD compared to control groups (p<0.05). Mitochondrial activity, morphological abnormality, ROS and LPO levels in ALA+BSA or MBCD groups were no significant difference compared with ALA, BSA and MBCD treatment groups. On the other hand, plasma and acrosomal membrane intact, and sperm motility in ALA+MBCD group were higher than single treatment groups (p<0.05), whereas ALA+BSA did not differ. Our findings indicate that carrier proteins such as BSA and MBCD could improve the effect of ALA during cryopreservation of boar sperm, and treatment of ALA with carrier proteins enhance membrane integrity, mitochondrial activity through reduction of ROS-induced LPO.

Alpha-linolenic acid enhances maturation and developmental competence via regulation of glutathione, cAMP and fatty acid accumulation during in vitro maturation of porcine oocytes

  • Jeon, Ye-Eun;Hwangbo, Yong;Kim, Sun-Young;Park, Choon-Keun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.357-365
    • /
    • 2020
  • The aim of present study was to investigate regulatory mechanism of alpha-linolenic acid (ALA) during in vitro maturation (IVM) on nuclear and cytoplasmic maturation of porcine oocytes. Basically, immature cumulus-oocyte complexes (COCs) were incubated for 22 h in IVM-I to which hormone was added, and then further incubated for 22 h in IVM-II without hormone. As a result, relative cumulus expansion was increased at 22 h after IVM and it was enhanced by treatment of ALA compared with control group (p < 0.05). During IVM process within 22 h, cAMP level in oocytes was decreased at 6 h (p < 0.05) and it was recovered at 12 h in ALA-treated group, while oocytes in control group recovered cAMP level at 22 h. In cumulus cells, it was reduced in all time point (p < 0.05) and ALA did not affect. Treatment of ALA enhanced metaphase-I (MI) and MII population of oocytes compared with oocytes in control group at 22 and 44 h, respectively (p < 0.05). Intracellular GSH levels in ALA group was increased at 22 and 44 h after IVM (p < 0.05), whereas it was increased in control group at 44 h after IVM (p < 0.05). In particular, the GSH in ALA-treated oocytes during 22 h of IVM was higher than control group at 22 h (p < 0.05). Lipid amount in oocytes from ALA group was higher than control group (p < 0.05). Treatment of ALA did not influence to absorption of glucose from medium. Cleavage and blastocyst formation of ALA-treated oocytes were enhanced compared with control group (p < 0.05). These findings suggest that supplementation of ALA could improve oocyte maturation and development competence through increasing GSH synthesis, lipid storage, and regulation of cAMP accumulation during early 22 h of IVM, and these might be mediated by cumulus expansion.

Chemical Composition of Several Herb Plants (서양 허브식물의 화학성분)

  • Oh, Moon-Hun;Whang, Hea-Jeung
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • Chemical compositions of several herbs (rosemary, mint, thyme, sage, and lavender) cultivated in Korea were analyzed. Approximate compositions were as follows: moisture $69.92{\sim}82.10%$, crude ash $2.48{\sim}6.15%$, crude fat $0.40{\sim}2.46%$, crude protein $0.84{\sim}1.57%$, and crude fiber $2.48{\sim}6.15%$. Total contents of phenolics determined by Folin-Dennis's method were in the range of $73.24{\sim}197.79mg%$. Contents of minerals, Na, Ca, Mn, P, Mg, Zn, and Fe determined by ICP-AES were $43.0{\sim}112.5,\;177.5{\sim}304.0,\;0.5{\sim}1.5,\;74.0{\sim}218.5,\;57.0{\sim}116.0,\;1.0{\sim}2.0$ and $3.0{\sim}5.0mg%$, respectively. Free sugar contents determined by HPLC were: sucrose $0{\sim}7.61$, glucose $0.94{\sim}15.92$, and rhamnose $0.64{\sim}7.99mg%$. Fatty acids including palmitic, stearic, oleic, linoleic, linolenic, and arachidonic acids were identified by GC. Linoleic and linolenic acid contents were higher than those of palmitic and stearic acids. Aroma components identified by GC-MS were 1,8-cineole, ${\alpha}-phellandrene,\;{\alpha}-terpinene,\;{\beta}-pinene,\;{\beta}-thujone$, borneol, butan-1-ol, cis-sabinene hydrate, ${\delta}-carene,\;{\gamma}-terpinene$, and verbenone.

Screening of ${\gamma}-linolenic$ Acid Resources and Fatty Acid Composition in Korean Native Medicinal Plants Resources (국내 약용자원식물의 지방산 조성과 ${\gamma}-linolenic$ acid 탐색)

  • Kim, Jung-Bong;Kim, Young-Hwan;Lee, Cheol-Hee;Hwang, Young-Soo;Park, Ro-Dong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.3 no.2
    • /
    • pp.107-110
    • /
    • 1995
  • Fatty acid composition analysis was carried out from 60 species of Korean native medicinal plant to screen ${\gamma}-linolenic$ acid(GLA) resources. Oenothera odorata, SymPhytum officinal, and Lithospermum erythrorhizon contained ${\gamma}-linolenic$ acid with 9.5%, 3.5%, 7.2% of total fatty acid content, respectively. The vegetative organs usually contained higher level of ${\alpha}-linolenic$ acid than seeds. Some plants were found to be excellent source of unsaturated fatty acid.

  • PDF

Effects of Dietary Canola Oil on Growth, Feed Efficiency, and Fatty Acid Profile of Bacon in Finishing Pigs and of Longissimus Muscle in Fattening Horses

  • Joo, Eun-Sook;Yang, Young-Hoon;Lee, Seung-Chul;Lee, Chong-Eon;Cheoung, Chang-Cho;Kim, Kyu-Il
    • Nutritional Sciences
    • /
    • v.9 no.2
    • /
    • pp.92-96
    • /
    • 2006
  • Studies were carried out to determine the effect of feeding diet containing 5% canola oil on growth, feed efficiency, and fatty acid profile of bacon in finishing pigs and of longissimus muscle in horses fattening for meat production. In experiment 1, twenty cross-bred barrows and twenty cross-bred gilts (average weight, 80 kg) were blocked by sex and weight, and five barrows or five gilts were allotted to one of eight pens $(6.25m^2/pen)$, respectively. Four pens (two with barrows and two with gilts) randomly selected were assigned to a control diet containing 5% tallow and the remaining four pens to a diet containing 5% canola oil. The average daily weight gain, daily feed intake and feed efficiency over a 6-wk feeding period were not different (p>0.05) between the two diets, nor was backfat thickness. Fatty acid profile in bacon fat showed that the 0-3 fatty acid ($\alpha-linolenic$ acid) content in pigs fed diet containing 5% canola oil was approximately three times (P<0.01) as much as in pigs fed tallow. In experiment 2, thirty-two Jeju horses (average $weight{\pm}SE,\;244{\pm}5kg$) were blocked by sex and weight, and two horses of the same sex and similar body weight were allotted to one $(15m^2/pen)$ of eight pens. Eight pens (four with males and four with females) selected randomly were assigned to a control diet containing 5% tallow and the remaining eight pens to a diet containing 5% canola oil. The average daily weight gain, daily feed intake and feed efficiency for concentrates without roughages over a 5-month feeding period were not different (P>0.05) between the two diet groups. Fatty acid profile in the muscle fat showed that the 0-3 fatty acid (a-linolenic acid) content in horses fed diet containing 5% canola oil was approximately two times (P<0.01) that in horses fed tallow. The increased (P<0.01) 0-3 fatty acid content in pigs and horses fed canola oil decreased the ratio of n-6 to n-3 fatty acids compared to the control, indicating a significant improvement in pork and horsemeat fatty acid profile for health benefit. Our study demonstrated that feeding diet containing 5% canola oil may help produce pork and horsemeat with more health benefit, increasing their $\alpha-linolenic$ acid content without deleterious effects on growth of pigs and horses.

Linolenic Acid in Association with Malate or Fumarate Increased CLA Production and Reduced Methane Generation by Rumen Microbes

  • Li, X.Z.;Choi, S.H.;Jin, G.L.;Yan, C.G.;Long, R.J.;Liang, C.Y.;Song, Man K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.819-826
    • /
    • 2009
  • An in vitro study was conducted to investigate the effect of malate or fumarate on fermentation characteristics, and production of conjugated linoleic acid (CLA) and methane ($CH_4$) by rumen microbes when incubated with linolenic acid (${\alpha}-C_{18:3}$). Sixty milligrams of ${\alpha}-C_{18:3}$ alone (LNA), or ${\alpha}-C_{18:3}$ with 24 mM malic acid (M-LNA) or ${\alpha}-C_{18:3}$ with 24 mM fumaric acid (F-LNA) were added to the 150 ml culture solution consisting of 75 ml strained rumen fluid and 75ml McDougall's artificial saliva. Culture solution for incubation was also made without malate, fumarate and ${\alpha}-C_{18:3}$ (Control). Two grams of feed consisting of 70% concentrate and 30% ground alfalfa (DM basis) were also added to the culture solution of each treatment. In vitro incubation was made anaerobically in a shaking incubator up to 12 h at $39^{\circ}C$. Supplementation of malate (M-LNA) or fumarate (F-LNA) increased pH at 6 h (p<0.01) and 12 h (p<0.001) incubation times compared to control and linolenic acid (LNA) treatments. Both malate and fumarate did not influence the ammonia-N concentration. Concentration of total VFA in culture solution was higher for M-LNA and F-LNA supplementation than for control and LNA treatments from 6 h (p<0.040) to 12 h (p<0.027) incubation times, but was not different between malate and fumarate for all incubation times. Molar proportion of $C_3$ was increased by F-LNA and M-LNA supplementation from 6 h (p<0.0001) to 12 h (p<0.004) incubation times compared to control and LNA treatments. No differences in $C_{3}$ proportion, however, were observed between M-LNA and F-LNA treatments. Accumulated total gas production for 12h incubation was increased (p<0.0002) by M-LNA or F-LNA compared to control or LNA treatment. Accumulated $CH_4$ production for 12 h incubation, however, was greatly reduced (p<0.0002) by supplementing malate or fumarate compared to the control, and its production from M-LNA or F-LNA treatment was smaller than that from LNA treatment. Methane production from LNA, M-LNA or F-LNA treatment was steadily lower (p<0.01 - p<0.001) from 3 h incubation time than that from the control, and was also lower for M-LNA or F-LNA treatment at incubation times of 6 h (p<0.01) and 9 h (p<0.001) than for LNA treatment. Methane production from LNA, however, was reduced (p<0.01 - p<0.001) from 3 h to 9 h incubation times compared to the control. Both malate and fumarate increased concentration of trans11-$C_{18:1}$ from 3 h to 12 h incubation (p<0.01), cis9,trans11-CLA up to 6 h incubation (p<0.01 - p<0.01), trans10,cis12-CLA at 3 h (p<0.05) and 12 h (p<0.01), and total CLA for all incubation times (p<0.05) compared to corresponding values for the ${\alpha}-C_{18:3}$ supplemented treatment (LNA). In conclusion, malate and fumarate rechanneled the metabolic $H_2 pathway to production of propionate and CLA, and depressed the process of biohydrogenation and methane generation. Linolenic acid alone would also be one of the optimistic alternatives to suppress the $CH_4$ generation.

Studies on the Composition of Fatty Acid in the Lipid Classes of Seed Oils of the Labiatae Family (순형과(脣形科) 종실유(種實油)의 지질분획별(脂質分劃別) 지방산(脂肪酸) 조성(組成)에 관한 연구(硏究))

  • Joh, Yong-Goe;Lee, Ok-Kyoung;Lim, Young-Ju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.13-23
    • /
    • 1988
  • Contents of total lipids, neutral lipids, glycolipids and phospholipids of seed oils of 16 species of the Labiatae family were determined and their fatty acid compositions were analyzed by gas-liquid chromatography. The results were summarized as follows. 1) Lipid contents of seeds were shown to be 40.6% in Perilla frutescens Britton var. japonica, 32.2% in P. frutescens britton var. acuta, 31.9% in lsodon japonicus, 32.7% in l. inflexus, 48.3% in l. serra, 35.1% in Mosls dianthera, 38.2% in M. punctulata, 33.4% in Nepeta cataria, 26.3% in Agastache rugosa, 30.9% in Eisholtzia ciliata, 18.9% in Salvia splendens, 23.9% in Lycopus maackianus, 49.5% in Clinopodium chinense var. parviflorum, 30.9% in Ametystea caerulea, 33.1% in Leonurus sibircus and 34.3% in Scutellaria basicalensis. 2) Contents of neutral lipids, glycolipids and phospholipids from the seed oils amounted to 98.6%, 0.7%, 0.8% in P. frutescens Britton var. japonica; 95.5%, 1.3%, 3.1% in P. frutescens Britton var. acuta; 95.1%, 1.8%, 3.1% in l. japoincus; 91.4%, 3.5%, 5.1% in l. inflexus; 96.8%, 0.7%, 2.5% in l, serra; 96.0%, 1.8%, 2.2% in Mosla dianthera; 94.7%, 2.0%, 3.3% in M. punctulata; 90.1%, 2.4%, 7.5% in Nepeta cataria; 90.1%, 3.4%, 6.5% in Agastache rugosa; 86.3%, 3.3%, 10.4% in Elsholtzia ciliata; 94.3%, 1.5%, 4.3% in Salvia splendens; 87.2%, 2.9%, 9.0% in Lycopus maackianus; 87.0%, 1.5%, 11.5% in Clinopodium chinense var. parviflorum; 91.8%, 1.6%, 6.6%; 95.5%, 0.4%, 4.1% in Leonurus sibricus; 89.0%, 1.4%, 9.6% in Scutellaria baicalensis. 3) Total lipids revealed the predominace of unsaturated fatty acids (82.0-94.5%) and larger variations were found in the composition of ${\alpha}-linolenic$ acid (0.4-67.9%) and linoleic acid (11.2-82.9%). High level of ${\alpha}-linoenic$ acid was present in P. frutescens Britton var. japonica (67.9%), P. frutescens Britton var, acuta (66.0%), lsodon japonicus (65.2%), l. inflexus (59.0%), l. serra (57.3%), Mosla dianthera (60.9%), Nepeta cataria (58.3%), Agastache rugosa (58.5%) and Elsholtzia ciliata (46.2%), and followed by linoleic acid (11.2-32.1%) and oleic acid (9.3-12.2%). However, linoleic acid was the most predominant component in the total lipids of Clinopodium chinense var. parviflorum (62.4%), Ametystea caerules (82.9%), Leonurus sibricus (60.9%) and Scutellaria baicalensis (63.4%), with very small amounts of ${\alpha}-linolenic$ acid (0.4-3.1%). The total lipids of Salvia splendens, Lycopus maackianus and Mosla punctulata also contained linoleic acid of 31.3%, 48.8% and 53.4%, with a considerable amount of ${\alpha}-linolenic$ acid of 34.5% 27.0% and 16.7%. Palmitic acid was the major saturated fatty acid in all the oils investigated (4.1-14.2%). 4) Fatty acid profiles of neutral lipids bore a close resemblance to those of total lipids in all the seed oils, but different from those of glycolipids and phospholipids. Fatty acid composition pattern of glycolipids and phospholipids showed a considerably increased level of saturated fatty acids (19.0-66.8%, 17.8-35.2%) mainly composed of palmitic acid and stearic acid, and a noticeable low level of unsaturated fatty acids (41.2-80.9%, 64.7-82.1%) which was ascribed to the decrease in ${\alpha}-linolenic$ acid of high ${\alpha}-linolenic$ acid seed oils, and in linoleic acid of high linoleic seed oils, compared to that of total lipids and neutral lipids.

Effects of α-Linolenic Acid and Bovine Serum Albumin on Frozen-thawed Boar Sperm Quality during Cryopreservation

  • Lee, Won-Hee;Hwangbo, Yong;Lee, Sang-Hee;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.40 no.4
    • /
    • pp.33-37
    • /
    • 2016
  • This study was conducted to evaluate effect of ${\alpha}$-linolenic acid (ALA) and bovine serum albumin (BSA) on viability, acrosome reaction and mitochondrial intact in frozen-thawed boar sperm. The boar semen was collected by gloved-hand method and cryopreserved using freezing extender containing 3 ng/mL ALA and/or $20\;{\mu}g/mL$ BSA. Cryo-preserved boar sperms were thawed in $37^{\circ}C$ water-bath for 45 sec to analysis. Viability, acrosome reaction, and mitochondrial intact were analyzed using flow cytometry. In results, viability of frozen-thawed boar sperm was significantly higher in only ALA+BSA supplement group than control group (p<0.05), whereas there was no difference either in ALA or BSA supplement. However, acrosome reacted sperm in both of live and all sperm population were significantly decreased in all treatment groups than control (p<0.05). Interestingly, mitochondrial intact of boar sperm was enhanced in ALA and ALA+BSA groups compared with control (p<0.05). In this study, we showed that supplementation of ALA and BSA in freezing extender enhanced the sperm viability, mitochondrial intact and decrease acrosomal membrane damage. In conclusion, our findings suggest that quality of frozen-thawed sperm in mammalians could improve by using of ALA and BSA.