• Title/Summary/Keyword: ${\alpha}$-tubulin acetyltransferase 1

Search Result 2, Processing Time 0.015 seconds

Casein kinase 2 promotes the TGF-β-induced activation of α-tubulin acetyltransferase 1 in fibroblasts cultured on a soft matrix

  • You, Eunae;Jeong, Jangho;Lee, Jieun;Keum, Seula;Hwang, Ye Eun;Choi, Jee-Hye;Rhee, Sangmyung
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.192-197
    • /
    • 2022
  • Cell signals for growth factors depend on the mechanical properties of the extracellular matrix (ECM) surrounding the cells. Microtubule acetylation is involved in the transforming growth factor (TGF)-β-induced myofibroblast differentiation in the soft ECM. However, the mechanism of activation of α-tubulin acetyltransferase 1 (α-TAT1), a major α-tubulin acetyltransferase, in the soft ECM is not well defined. Here, we found that casein kinase 2 (CK2) is required for the TGF-β-induced activation of α-TAT1 that promotes microtubule acetylation in the soft matrix. Genetic mutation and pharmacological inhibition of CK2 catalytic activity specifically reduced microtubule acetylation in the cells cultured on a soft matrix rather than those cultured on a stiff matrix. Immunoprecipitation analysis showed that CK2α, a catalytic subunit of CK2, directly bound to the C-terminal domain of α-TAT1, and this interaction was more prominent in the cells cultured on the soft matrix. Moreover, the substitution of alanine with serine, the 236th amino acid located at the C-terminus, which contains the CK2-binding site of α-TAT1, significantly abrogated the TGF-β-induced microtubule acetylation in the soft matrix, indicating that the successful binding of CK2 and the C-terminus of α-TAT1 led to the phosphorylation of serine at the 236th position of amino acids in α-TAT1 and regulation of its catalytic activity. Taken together, our findings provide novel insights into the molecular mechanisms underlying the TGF-β-induced activation of α-TAT1 in a soft matrix.

Effects of quantitative trait loci determining testicular weight in DDD/Sgn inbred mice are strongly influenced by circulating testosterone levels

  • Suto, Jun-ichi;Kojima, Misaki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1826-1835
    • /
    • 2019
  • Objective: Testicular growth and development are strongly influenced by androgen. Although both testis weight and plasma testosterone level are inherited traits, the interrelationship between them is not fully established. Males of DDD/Sgn (DDD) mice are known to have extremely heavy testes and very high plasma testosterone level among inbred mouse strains. We dissected the genetic basis of testis weight and analyzed the potential influence of plasma testosterone level in DDD mice. Methods: Quantitative trait loci (QTL) mapping of testis weight was performed with or without considering the influence of plasma testosterone level in reciprocal $F_2$ intercross populations between DDD and C57BL/6J (B6) mice, thereby assessing the influence of testosterone on the effect of testis weight QTL. Candidate genes for testis weight QTL were investigated by next-generation sequencing analysis. Results: Four significant QTL were identified on chromosomes 1, 8, 14, and 17. The DDDderived allele was associated with increased testis weight. The $F_2$ mice were then divided into two groups according to the plasma testosterone level ($F_2$ mice with relatively "low" and "high" testosterone levels), and QTL scans were again performed. Although QTL on chromosome 1 was shared in both $F_2$ mice, QTL on chromosomes 8 and 17 were identified specifically in $F_2$ mice with relatively high testosterone levels. By whole-exome sequencing analysis, we identified one DDD-specific missense mutation Pro29Ser in alpha tubulin acetyltransferase 1 (Atat1). Conclusion: Most of the testis weight QTL expressed stronger phenotypic effect when they were placed on circumstance with high testosterone level. High testosterone influenced the QTL by enhancing the effect of DDD-derived allele and diminishing the effects of B6-derived allele. Since Pro29Ser was not identified in other inbred mouse strains, and since Pro29 in Atat1 has been strongly conserved among mammalian species, Atat1 is a plausible candidate for testis weight QTL on chromosome 17.