• Title/Summary/Keyword: ${\alpha}$-tocopherol)

Search Result 793, Processing Time 0.027 seconds

Antioxidative Properties of Phenolic Compounds Extracted from Black Rice (흑미 색소물질에 함유된 페놀화합물의 항산화 특성)

  • 정영아;이재권
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.6
    • /
    • pp.948-951
    • /
    • 2003
  • The composition and antioxidative effects of phenolic compounds in black rice were studied. The contents of free and bound phenolic compounds extracted from black rice were 845.4 and 401.6 mg respectively per 100g sample weight. Free phenolic compounds had higher antioxidation ability than those of bound phenolic compounds. Solvent fractionation of free phenolic compounds revealed that butanol fraction had the highest phenolic compounds contents and antioxidative activity among other solvent fractions. Although butanol fraction showed lower lipid peroxidation inhibition (LPI) ability than that of $\alpha$-tocopherol and BHT, free radical scavenging ability was much higher than that of $\alpha$-tocopherol and BHT, as evidenced by electron donating ability (EDA) and benzoic acid hydroxylation inhibition (BAHI) assays.

Preparation and Characterization of Liposome for Iron-Fortified Food Additive (철분 강화 식품첨가제용 리포좀의 제조 및 특성)

  • 이종우;전수진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.5
    • /
    • pp.864-868
    • /
    • 2004
  • Iron is an essential ingredient for all metabolism in a living body However, because of the very low content of the iron in foods, many researches have been performed about iron-fortified food additives. We developed an iron-fortified food additive using the liposome that contain ferrous sulfate and hemin. For preventing the autoxidation of the ferrous sulfate, ascorbic acid was applied. Also, to prevent the oxidation of the liposome induced by the added ferrous sulfate and/or hemin, $\alpha$ -tocopherol was additionally applied. Though the effect of the added aqueous ascorbic acid did not show the antioxidative activity on the liposome containing ferrous sulfate and/or hemin, the added $\alpha$ -tocopherol in the phospholipid bilayer could retard the oxidation of the liposome. These results support that the liposome containing ferrous sulfate, hemin and ascorbic acid with the incorporated $\alpha$ -tocopherol could be applied in the food industry as an iron-fortified additive.

a-Tocopherol Inhibits the Accumulation of Phospholipid Hydroperoxides in Rat Tissues Induced by 2, 2'-azinobis Hydrochloride

  • Lim, Beong-Ou;Choue, Ryo-Won;Kim, Jong-Dai;Ju, Hyang-Ran;Park, Dong-Ki
    • Nutritional Sciences
    • /
    • v.6 no.1
    • /
    • pp.20-24
    • /
    • 2003
  • The effect of a-tocopherol on the formation and accumulation of phospholipid hydroperoxides, especially of phosphatidylcholine hydroperoxides, in the tissues of 2, 2 -azobis Hydrochloride (AAPH) - dosed rats was investigated. In a-tocopherol supplemented rats, the activities of glutathione peroxidase, catalase and superoxide dismutase were significantly inhibited, compared with the AAPH group. AAPH treatment led to oxidation of phospholipids in the liver, lungs, brain, plasma and red blood cells (RBC), resulting in a notable increase in phosphatidylcholine hydroperoxide (PCOOH). All tissues of the rats given an $\alpha$-tocopherol supplement showed an attenuation of the stimulating effect of AAPH, leading to low levels of formation of PCOOH. Also, the rats injected with AAPH and a-tocopherol showed relatively normal-appearing hepatocytes, except for a little loss of the granules. With regards to the morphological appearance of the liver, it was observed that oral intakes of a -tocopherol resulted in an antioxidant defense against attacks of peroxyl radicals. Thus, we suggest that a-tocopherol is potentially helpful in protecting membrane phospholipids against oxidative damage in vivo.

Thermal Degradation Pattern of Tocopherols on Heating without Oxygen in a Model Food System (모델식품계에서 무산소 가열시 토코페롤의 열분해 패턴)

  • 정혜영
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.6
    • /
    • pp.635-639
    • /
    • 1998
  • The thermal degradation pattern of $\alpha$-, ${\gamma}$-and $\delta$-tocopherols in glycerol was investigated during heating at 100~25$0^{\circ}C$ for 5-60 min in the absence of oxyge. The tocopherols and thermally decomposed products were separated by HPLC with a reversed phase $\mu$-Bondapak C18-column. The degradation pattern of $\alpha$-tocopherol during the heating in the absence of oxygen was different from those of ${\gamma}$-and $\delta$-tocopherols. But the degradation patterns of ${\gamma}$-and $\delta$-tocopherols were similar to each other. The residual content of $\alpha$-tocopherol during the heating in the absence of oxygen decreased to the range 12~65% and those of ${\gamma}$-and $\delta$-tocopherols decreased to the range 4~96%. The thermal degradation of tocopherols in the absence of oxygen was less than that in the presence of oxygen.

  • PDF

Attenuation of Ischemia-Reperfusion Injury by Antioxidant Vitamins in a Pig Model of Renal Auto-Transplantation (돼지의 신장 자가이식에서 Ascorbic Acid와 Alpha-tocoperol 의한 허혈 및 재관류 손상의 감소)

  • Kim, Myung-Jin;Lee, Jae-Yon;Cho, Sung-Whan;Park, Chang-Sik;Jun, Moo-Hyung;Jeong, Seong-Mok;Kim, Myung-Cheol
    • Journal of Veterinary Clinics
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • This study was to determine the effects of ascorbic acid and alpha-tocopherol on the attenuation of an ischemia-reperfusion injury (IRI) after renal auto-transplantation in a pig model. In the treatment group, three pigs were subjected to a renal auto-transplantation followed by the administration of ascorbic acid and alpha-tocopherol and the flushing of ascorbic acid plus hepa-saline solution. Otherwise, the control group used only flushing of hepa-saline solution. Blood samples were collected from these pigs for measurement of serum blood urea nitrogen (BUN) and creatinine values on the day before surgery and day 1, 3, 5 and 7 after surgery. The kidneys were taken for histopathological evaluation following euthanasia on day 14 after surgery. Serum creatinine and BUN values showed a significantly difference between control and treatment group on day 1, 3 and 5 (P<0.05). In histopathologic findings, treatment group showed less damage than that of the control group on the basis of renal tubular damage. As a result, this study suggests that the exogenous ascorbic acid and alpha-tocopherol pretreatment therapy with ascorbic acid irrigation-aspiration has a role of attenuation of renal I/R injury and recovery of renal function in a pig transplantation model.

Histopathological Observation and Effect of DL-α-Tocopherol on Hyperbaric Oxygen Toxicity (고압산소(高壓酸素)가 폐조직(肺組織)에 미치는 영향(影響)과 DL-α-Tocopherol의 내성효과(耐性效果)에 관(關)한 연구(硏究))

  • Lee, Won Chang;Yoon, Wha Joong
    • Korean Journal of Veterinary Research
    • /
    • v.15 no.1
    • /
    • pp.47-50
    • /
    • 1975
  • Experimental studies were performed to observe the effect of exposure to 100% oxygen in 2 atmospheres on the lung tissue of rats, and to examine the resistant effect of DL-${\alpha}$-tocopherol. The following results were made through this experiment: 1. Half-lethal time by oxygen poisoning was longer in tocopherol treated group than not treated group. 2. Ratio of lung weight to body weight was significantly higher in fatal group within half-lethal time than survival group (p<0.01). 3. Histopathological changes of the lung by oxygen toxicity were vascular congestion, pulmonary edema, hemorrhage and emphysematous change. The degree of changes were rather marked in experimental group than tocopherol untreated group. Those were regard as the changes being occurred during tolerance process by prolonging half-lethal time.

  • PDF

Oxidative Stability of Tocopherols on Korean Sesame oil and chinese Sesame oil (한국산 참깨기름과 중국산 참깨기름의 토코페롤 산화안정성)

  • 신묘란;주광지
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.4 no.2
    • /
    • pp.51-57
    • /
    • 1994
  • Six sesame oils prepared from Korean and Chinese sesame were oxidized at 40$^{\circ}C$ for 16 weeks in a dark place. Effects of oxidative stability on tocopherols of those sesame oils were studied in related to chemical changes in the oils. All oil samples showed that the rate of tocopherol reduction was increased by the storage time. The changes of peroxide value, free fatty acid, carbonyl content were not caused in direct relation to the tocopherols oxidation. The amount of total tocopherol in the Korean sesame oil ranged from 48.7-50.3mg/100g and Chinese seseame oil ranged from 42.4-44.7 mg/100g According to the three individual tocopherols remaining content after 16weeks, ${\gamma}$-,${\alpha}$-,${\beta}$- tocopherol showed 70%, 30%, 20% of initial concentrations in the oils respectively. There was no significant difference between Korean and Chinese sesame oil except the higher total amount of the tocopherol in Korean sesame oil than that of Chinese.

Protective Effect of Isoflavone, Genistein from Soybean on Singlet Oxygen Induced Photohemolysis of Human Erythrocytes ($^1O_2$으로 유도된 사람 적혈구의 광용혈에 있어서 대두의 아이소플라본인 제니스테인의 보호작용)

  • Park, Soo-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.510-518
    • /
    • 2003
  • Protective effects of natural components including genistein (4',5,7-trihydroxyisoflavone) from Glycine max MERRILL on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. Genistein $(10{\sim}100\;{\mu}m)$ suppressed photohemolysis in a concentration-dependent manner, and was more effective than the lipid peroxidation chain blocker, ${\alpha}$-tocopherol (Vit. E). Glycoside of genistein, genistin, the water-soluble antioxidant, L-ascorbate, and the iron chelator, myo-inositol hexaphosphoric acid dodecasodium salt (sodium phytate) did not exhibit protective effect against photohemolysis. L-Ascorbate and sodium phytate stimulated photohemolysis at high concentration $(500\;{\mu}m)$. ${\alpha}$-Carotene 3,3'-diol (lutein), a singlet oxygen $(^1O_2)$ quencher, exhibited pronounced protective effect, an indication that $^1O_2$ is important in photohemolysis sensitized by rose-bengal. Reactive oxygen scavenging activities $(OSC_{50})$ of natural antioxidants including genistein on reactive oxygen species (ROS) generated in $Fe^{3+}-EDTA/H_2O_2$ system using the luminol-dependent chemiluminescence assay were in the order of sodium phytate > L-ascorbate > ${\alpha}$-tocopherol > genistein > genistin. $OSC_{50}$ value of genistein, genistin, ${\alpha}$-tocopherol, L-ascorbate, and sodium phytate were 41.0, 109.0, 9.0, 5.2, and $0.56{\mu}m$ respectively. The order of free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity $(FSC_{50})$ was L-ascorbate > ${\alpha}$-tocopherol > genistein > genistin. These results indicate that genistein can function as an antioxidant in biological systems, particularly skin exposed to solar UV radiation by scavenging $^1O_2$ and other ROS, and to protect cellular membranes against ROS.

Current Status and Prospects of Quality Evaluation in Sesame (참깨의 품질평가 현황과 전망)

  • 류수노;김관수;이은정
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.140-149
    • /
    • 2002
  • Sesame (Sesamum indicum L.) is probably the most ancient oilseed crop known in the world. Sesame seed is known for its high nutritional value and for having oil (51%) and protein (20%) content. The fatty acid composition of sesame oil is palmitic acid (7.8%), stearic acid (3.6%), oleic acid (45.3%), and linoleic acid (37.7%). Sesame oil is characterized by a very high oxidative stability compared with other vegetable oils. Two lignan-type compounds, sesamin and sesamolin, are the major constituents of sesame oil unsaponifiables. Sesamol (a sesamolin derivative) can be present in sesame seeds and oils in very small amount. Other lignans and sesamol are also present in sesame seeds and oils in very small amount as aglycones. Lipid oxidation activity was significantly lower in the sesamolin-fed rats, which suggests that sesamolin and its metabolites contribute to the antioxidative properties of sesame seeds and oil and support that sesame lignans reduce susceptibility to oxidative stress. Sesaminols strongly inhibit lipid peroxidation related to their ability to scavenge free radical. The sesame seed lignan act synergistically with vitamin I in rats fed a low $\alpha$-tocopherol diet and cause a marked increase in a u-tocopherol concentration in the blood and tissue of rats fed an $\alpha$-tocopherol containing diet with sesame seed or its lignan. The authors are reviewed and discussed for present status and prospects of quality evaluation and researched in sesame seeds to provide and refers the condensed informations on their quality.

Effect of Chronical Ethanol Ingestion on the Levels of Fatty Acid Ethyl Esters (FAEEs) and Lipid Peroxidation in Rat Tissues (만성적으로 알코올을 섭취한 쥐의 조직 내 Fatty Acid Ethyl Esters (FAEEs)와 지질과산화물 형성에 미치는 영향)

  • Kim, Min-Seok;Kim, Se-Na;Park, Hyun-Suh
    • Journal of Nutrition and Health
    • /
    • v.40 no.5
    • /
    • pp.413-418
    • /
    • 2007
  • The present study was designed to observe the effect of chronically ingested ethanol on the level of fatty acid ethyl esters (FAEEs), which is a non-oxidative metabolite of ethanol metabolism in tissues, and its correlation to the status of oxidative stress in rats. Forty male Sprague Dawley rats weighing 145 - 155 g were divided into 2 groups, Control and EtOH. All rats were fed Lieber-DeCarli liquid diet for 4 weeks by pair-feeding. An isocaloric maltose dextrin was added in replace of 50 g ethanol (36%kcal) in the control diet. Chronically ingested ethanol significantly increased the content of FAEEs in pancreas and liver, but not in brain. The level of 2-thiobarbituric acid reactive substances (TBARS) was significantly increased, but ${\alpha}-tocopherol$ level was significantly decreased in pancreas and liver. However, the levels of TBARS and ${\alpha}-tocopherol$ in brain were not significantly affected by ethanol ingestion. Therefore, chronically ingested ethanol might cause tissue damage by increasing the levels of FAEEs and TBARS and dissipating more ${\alpha}-tocopherol$ in tissues.