• 제목/요약/키워드: ${\alpha}$-particle

검색결과 386건 처리시간 0.034초

금속-세라믹용 Pd-Cu-Ga-Zn계 합금의 모의 소성 시 냉각 속도가 석출 경화에 미치는 영향 (Effect of cooling rate on precipitation hardening of a Pd-Cu-Ga-Zn metal-ceramic alloy during porcelain firing simulation)

  • 김민정;신혜정;권용훈;김형일;설효정
    • 대한치과재료학회지
    • /
    • 제44권3호
    • /
    • pp.207-216
    • /
    • 2017
  • 금속-세라믹용 수복물에서 하부 구조물 제작에 사용되는 합금 중 하나인 Pd-Cu-Ga-Zn계 합금은 비교적 최근에 개발된 합금인 이유로 인해 도재 용착을 위한 소성 과정을 거치면서 합금에서 일어날 수 있는 경도 변화가 아직 밝혀지지 않았다. 그러나 이와 조성이 유사한 Pd-Cu-Ga-In-Au계 금속-세라믹용 합금의 경우 모의 소성 과정에서 경도가 하강한 것으로 밝혀져 있다. 따라서 Pd-Cu-Ga-Zn계 합금 또한 소성 과정 중에 합금의 연화가 일어날 것으로 예상되었으며 금속-세라믹용 Pd-Cu-Ga-Zn계 합금의 모의 소성 시 냉각 속도가 석출 경화에 미치는 영향을 조사하여 다음과 같은 결과를 얻었다. 냉각 속도가 빠른 경우(Stage 0) 매 소성 단계에서 합금의 경도가 상승하였고, 최종 경도 값도 높게 유지되었다. 냉각 속도가 느린 경우(Stage 3) 소성 첫 단계에서는 경도가 가장 높았지만, 소성 완료 후 합금의 최종 경도는 더 낮아졌다. 매 소성 단계에서 Stage 0으로 냉각한 시편에서 소성 과정 동안 경도가 상승한 원인은 석출 경화에 기인하였다. 주조 후 매 소성 단계에서 Stage 3의 냉각 속도로 냉각한 시편에서 소성 과정 동안 경도가 하강한 원인은 기지와 판상형 석출물 내부에 생성된 점 모양의 석출물의 조대화에 기인하였다. 기지와 판상형 석출물은 CsCl-type의 $Pd_2(Cu,Ga,Zn)$ 상이며, 입자형 구조는 Cu, Ga, Zn을 고용한 면심입방(face-centered cubic) 구조의 Pd-rich ${\alpha}$ 상이었다. $1,010^{\circ}C$에서 산화처리 한 시편을 더 낮은 온도에서 여러 단계로 소성함에 따라 Pd-rich ${\alpha}$ 상으로 이루어진 입자에 고용되어 있던 Cu, Ga, Zn이 Pd와 함께 석출되어 Pd-rich ${\alpha}^{\prime}$ 입자와 $Pd_2(Cu,Ga,Zn)$으로 이루어진 ${\beta}^{\prime}$ 석출 상으로 상 분리가 진행되었다. 이상으로부터 Pd-Cu-Ga-Zn계 합금은 모의 소성 시 냉각 속도를 빠르게 함으로써 최종 보철물의 내구성을 향상시킬 수 있다고 생각되었다.

The Effect of Pretreatment of Raw Powders on the Photoluminescence of Ca-α-SiAlON:Eu2+ Phosphor

  • Park, Young-Jo;Kim, Jin-Myung;Lee, Jae-Wook
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.413-417
    • /
    • 2014
  • The effect of calcination treatment of raw powders prior to high temperature synthesis of Ca-${\alpha}$-SiAlON:$Eu^{2+}$ phosphor was investigated. Based on data acquired from thermogravimetric analysis, calcination temperatures were set at 600, 750, and $900^{\circ}C$. Compared to the photoluminescence (PL) intensity of direct synthesis without calcination, a similar intensity was found for the $600^{\circ}C$ treatment, a 19% increased PL intensity was found for the $750^{\circ}C$ treatment, and a 23% decreased PL intensity was found for the $900^{\circ}C$ treatment. Observation of the particle morphology of the synthesized phosphors revealed that the material transport promoted through the agglomerates formed by the $750^{\circ}C$ treatment led to enhanced PL intensity. On the other hand, the oxidation of the starting AlN particles during the $900^{\circ}C$ treatment resulted in decreased photoluminescence.

Preparation and Cyclic Performance of Li1.2(Fe0.16Mn0.32Ni0.32)O2 Layered Cathode Material by the Mixed Hydroxide Method

  • Karthikeyan, K.;Nam, K.W.;Hu, E.Y.;Yang, X.Q.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.1995-2000
    • /
    • 2013
  • Layered $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ was prepared by the mixed hydroxide method at various temperatures. Xray diffraction (XRD) pattern shows that this material has a ${\alpha}-NaFeO_2$ layered structure with $R{\bar{3}}m$ space group and that cation mixing is reduced with increasing synthesis temperature. Scanning electron microscopy (SEM) reveals that nano-sized $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ powder has uniform particle size distribution. X-ray absorption near edge structure (XANES) analysis is used to study the local electronic structure changes around the Mn, Fe, and Ni atoms in this material. The sample prepared at $700^{\circ}C$ delivers the highest discharge capacity of 207 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ with good capacity retention of 80% after 20 cycles.

자전연소합성법에 의한 SiC 분말 제조시 반응변수의 영향 (The Investigation of Reaction Parameters on the Reactivity in the Preparation of SiC by SHS)

  • 신창윤;원형일;;원창환
    • 한국세라믹학회지
    • /
    • 제43권7호
    • /
    • pp.427-432
    • /
    • 2006
  • The preparation of SiC powder by SHS in the system of $SiO_2-Mg-C$ was investigated in this study. The effects of various processing parameters such as the initial pressure of inert gas in reactor, the content of Mg and C in mixture and the size of $SiO_2$ particles on the synthesis of SiC by SHS methode were investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 5 atm, and as the pressure increased, and the concentration of unreacted Mg decreased. At 50 atm of the initial inert gas pressure in reactor, the optimum composition for the preparation of pure SiC was $SiO_2+2.5Mg+1.2C$. SiC powder synthesized in this condition had a mixture of ${\alpha}-SiC\;and\;{\beta}-SiC$ with an irregular shape and the particle size of $0.5{\sim}0.8{\mu}m$.

ZrO2의 분말크기가 ZTA의 기계적 물성에 미치는 영향 (The Effect of Zirconia Particle Size on Mechanical Properties of Zirconia Toughened Alumina)

  • 손정호;신형섭
    • 한국재료학회지
    • /
    • 제24권12호
    • /
    • pp.652-657
    • /
    • 2014
  • The purpose of this study was to investigate the microstructures and mechanical properties of zirconia toughened alumina (ZTA) ceramics prepared from two kinds of 3Y-TZP powders. ZTA composites were prepared by adding two kinds of 3Y-TZP powders, 3YEH (BET = $7m^2/g$) and 3YEM (BET = $16m^2/g$), to ${\alpha}$-alumina in the range of 5-25 wt%. It was found that the microstructure photographs of the ZTA composites showed that the average grain size of alumina decreased as the content of zirconia increased. In our present study, specimens containing 3YEM zirconia exhibited smaller grain sizes compared to those of 3YEH zirconia. The Vickers hardness of the ZTA composites that were sintered at $1600^{\circ}C$ for 2 hrs was found to smoothly decrease with increasing zirconia content because of the low Young modulus in zirconia. The Vickers hardness of the ZTA containing 3YEH zirconia was greater than that of the 3YEM zirconia. In substance, the fracture toughness ($K_{1c}$) of the ZTA composites increased as the content of zirconia increased. The fracture toughness ($K_{1c}$) of ZTA containing 3YEM zirconia was greater than that of 3YEH zirconia.

표면개질된 나노알루미나를 혼합한, 에폭시/마이크로-나노알루미나 콤포지트의 열적특성 (A Study on the Thermal Properties of Epoxy/Micro-Nano Alumina Composites, as Mixture of Surface Modified Nano Alumina)

  • 박재준
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1504-1510
    • /
    • 2016
  • The aim of this study is to improve properties both glass transition temperature($T_g$) and coefficient of thermal expansion(CTE) using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,2,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40, 50, 60wt%)+surface modified nano alumina(1_phr) composites. 20 kinds specimen were prepared with containing micro, nano alumina and GDE as a micro composites(10, 20, 30, 40, 50, 60, 70wt%) or a nano/micro alumina composites(1phr/40, 50, 60wt%). Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The glass transition temperature and coefficients of thermal expansion was evaluated by DSC and TMA. The glass transition temperature decreased and coefficients of thermal expansion become smaller with filled contents of epoxy/micro alumina composites. On the other hand, $T_g$ and CTE as GDE addition variation(1,2,3,5g) of epoxy/micro-nano alumina composites decreased and increased respectively.

표면처리된 나노알루미나가 첨가된 에폭시/멀티-알루미나 콤포지트의 교류절연파괴 특성 (The AC Insulation Breakdown Properties of Epoxy/Multi-Alumina Composites for Adding Surface Modified Nano Alumina)

  • 박재준
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1511-1517
    • /
    • 2016
  • The aim of this study is to improve of properties for electrical AC insulation breakdown strength using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40,50,60wt%)+surface modified nano alumina(1_phr) composites. 14 kinds specimen were prepared with containing epoxy resins, epoxy micro composites and epoxy nano-micro alumina mixture composites. Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The electrical AC insulation breakdown strength was evaluated by sphere to sphere electrode system and raising velocity 1kV/s. The AC breakdown strength decreased insulation properties of multi-composites according to increasing micro alumina and GDE addition contents.

화학기상응축공정으로 제조한 Fe(C) 나노캡슐의 합성 및 미세구조 (Synthesis and Microstructure of Fe(C) Nanocapsules by Chemical Vapor Condensation)

  • 이정한;김성덕;김진천;최철진;이찬규
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.515-521
    • /
    • 2004
  • Fe(C) nanocapsules were prepared by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl $(Fe(CO)_5)$. Their characterizations were studied by means of X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy. The long-chained Fe(C) nanocapsules hav-ing the mean size of under 70 nm could be obtained below $1100^{\circ}C$ in different gas flow rates. The particle size of the powders was increased with increasing decomposition temperature, but it was decreased with increasing CO gas flow rate. The Fe powders produced at $500^{\circ}C$ consisted of three layers of ${\alpha}$-Fe/$Fe_3C$/amorphous phases, but it had two phase core-shell structure which consited of $Fe_3C$ phase of core and graphite of shell at $1100^{\circ}C$.

부양가스응축법에 의해 제조된 철산화물 나노 분말의 자기적 특성연구 (A Study on Magnetic Iron Oxide Nano Particles Synthesized by the Levitational Gas Condensation (LGC) Method)

  • 엄영랑;김흥회;이창규
    • 한국분말재료학회지
    • /
    • 제11권1호
    • /
    • pp.50-54
    • /
    • 2004
  • Nanoparticles of iron oxides have been prepared by the levitational gas condensation (LGC) method, and their structural and magnetic properties were studied by XRD, TEM and Mossbauer spectroscopy. Fe clusters were evaporated from a surface of the levitated liquid Fe droplet and then condensed into nanoparticles of iron oxide with particle size of 14 to 30 nm in a chamber filled with mixtures of Ar and $O_2$ gases. It was found that the phase transition from both $\gamma$-$Fe_2O_3$ and $\alpha$-Fe to $Fe_3O_4$, which was evaluated from the results of Mossbauer spectra, strongly depended on the $O_2$ flow rate. As a result, $\gamma$-$Fe_2O_3$ was synthesized under the $O_2$ flow rate of 0.1$\leq$$Vo_2$(Vmin)$\leq$0.15, whereas $Fe_3O_4$ was synthesized under the $O_2$, flow rate of 0.15$\leq$$Vo_2$(Vmin)$\leq$0.2.

Squeeze Casting에 의한 SiC 입자강화 Al합금기 복합재료의 미세조직 특성 (Microstructural Characteristics of SiC Particle Reinforced Aluminum Alloy Composite by Squeeze Casting)

  • 김석원;우기도;한상원
    • 한국주조공학회지
    • /
    • 제15권6호
    • /
    • pp.566-573
    • /
    • 1995
  • In this study, the microstructural characteristics such as primary silicon, eutectic silicon, $SiC_p$ dispersion behavior, compound amount and Si solubility in $Al/SiC_p$ composite fabricated by the squeeze casting under various conditions were investigated systematically. As applied pressure(MPa) increases, cooling rate and compound amount are increased. In gravity casting, the cooling rate of hypereutectic composite is slower than of hypoeutectic composite by exothermic reaction of primary Si crystallization. But the cooling rate of hypereutectic composite is faster than that of hypoeutectic composite fabricated by same applied pressure, because amount of primary Si crystallization in hypereutectic composite was decreased, on the contrary, primary ${\alpha}-Al$ in hypoeutetic composite was increased due to increase of Si solubility in matrix by applied pressure. The crystalized primary silicon in hypereutectic composite fabricated by squeeze casting become more fine than that in non-pressure casting This is because mush zone became narrow due to increase of Si content of eutectic composition by pressure and time for growth of primary silicon got shorter according to applied pressure. It is turned out that eutectic temperature and liquidus are decreased by the increasing of squeeze pressure in all the composite due to thermal unstability of matrix owing to increasing of Si solubility in matrix by the increasing of applied pressure, as indicated in thermal anaiysis(DSC) results.

  • PDF