• Title/Summary/Keyword: ${\alpha}$-amylase gene

Search Result 92, Processing Time 0.019 seconds

Characterization of Aspergillus sojae Isolated from Meju, Korean Traditional Fermented Soybean Brick

  • Kim, Kyung Min;Lim, Jaeho;Lee, Jae Jung;Hurh, Byung-Serk;Lee, Inhyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.251-261
    • /
    • 2017
  • Initially, we screened 18 Aspergillus sojae-like strains from Aspergillus spp. isolated from meju (Korean traditional fermented soybean brick) according to their morphological characteristics. Because members of Aspergillus section Flavi are often incorrectly identified because of their phylogenetic similarity, we re-identified these strains at the morphological and molecular genetic levels. Fourteen strains were finally identified as A. sojae. The isolates produced protease and ${\alpha}-amylase$ with ranges of 2.66-10.64 and 21.53-106.73 unit/g-initial dry substrate (U/g-IDS), respectively, which were equivalent to those of the koji (starter mold) strains employed to produce Japanese soy sauce. Among the isolates and Japanese koji strains, strains SMF 127 and SMF 131 had the highest leucine aminopeptidase (LAP) activities at 6.00 and 6.06 U/g-IDS, respectively. LAP plays an important role in flavor development because of the production of low-molecular-weight peptides that affect the taste and decrease bitterness. SMF 127 and SMF 131 appeared to be non-aflatoxigenic because of a termination point mutation in aflR and the lack of the polyketide synthase gene found in other A. sojae strains. In addition, SMF 127 and SMF 131 were not cyclopiazonic acid (CPA) producers because of the deletion of maoA, dmaT, and pks/nrps, which are involved in CPA biosynthesis. Therefore, A. sojae strains such as SMF 127 and SMF 131, which have high protease and LAP activities and are free of safety issues, can be considered good starters for soybean fermentations, such as in the production of the Korean fermented soybean products meju, doenjang, and ganjang.

Overproduction of a γ-glutamyltranspeptidase from Bacillus amyloliquefaciens in Bacillus subtilis through medium optimization (배지최적화를 통한 재조합 바실러스 서브틸리스에서 바실러스 아밀로리퀴파시엔스 유래 γ-글루타밀펩타이드전달효소의 대량생산)

  • Cho, Hye-Bin;Roy, Jetendra Kumar;Park, Wu-Jin;Jeon, Byoung-Oon;Kim, Young-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.610-616
    • /
    • 2017
  • ${\gamma}$-Glutamyltranspeptidase (GGT, EC 2.3.2.2) transfers ${\gamma}$-glutamyl moiety from glutamine to amino acids or peptides and hydrolyzes glutamine to glutamate and ammonia. In order to overproduce ${\gamma}$-glutamyltranspeptidase from Bacillus amyloliquefaciens (BAGGT), the encoding gene was cloned and expressed in Bacillus subtilis. The productivity of BAGGT in Bacillus subtilis was improved by 42-fold by using a dual-promoter system that was generated by combining promoters from B. subtilis ${\alpha}$-amylase and BAGGT genes. Through optimization of medium composition by Plackett-Burman design and central composition design, BAGGT was produced at $18.3{\times}10^7U/L$ of culture in the optimized medium. Compared to previously used Luria-Bertani medium, the optimized culture medium (15 g/L molasses, 60 g/L corn steep liquor, 6 g/L yeast extract, 4 g/L NaCl, 6 g/L $K_2HPO_4$, and 2 g/L $KH_2PO_4$), resulted in a 4.3-fold increase in production of BAGGT.