• Title/Summary/Keyword: ${\alpha}$-Tricalcium phosphate

Search Result 16, Processing Time 0.022 seconds

Fabrication of Hydroxyapatite Whiskers by Hydrolysis of α-TCP (α-TCP의 가수분해에 의한 수산화아파타이트 휘스커의 제조)

  • 백동주;양태영;이윤복;윤석영;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.608-614
    • /
    • 2003
  • Well developed hydroxyapatite whiskers (length 5 ${\mu}{\textrm}{m}$, diameter 0.5 ${\mu}{\textrm}{m}$) have been synthesized by the hydrolysis reaction of $\alpha$-tricalcium phosphate ($\alpha$-Ca$_3$(PO$_4$)$_2$) under pH 9.1 at 9$0^{\circ}C$ for 6 h. The effect of reaction conditions (temperature, time, pH) on the conversion of $\alpha$-tricalcium phosphate to hydroxyapatite was examined. In addition, the hydroryapatite was characterized in terms of microstructure, composition and thermal stability using XRD, SEM, ICP, and TGA instruments.

Hydration Properties of $\alpha$-Tricalcium Phosphate in Tris. Solution ($\alpha$-Tricalcium Phosphate의 Tris. Solution에서의 수화특성)

  • 인경필;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.905-910
    • /
    • 1993
  • $\alpha$-tricalcium phosphate($\alpha$-TCP) powders were synthesized and their hydration properties were investigated in Tris. solution. Two kinds of $\alpha$-TCP powder samples were prepared; the one is reaction product of CaHPO4.2H2O and CaCO3, and another is that of hydroxyapatite(HAp) and $\beta$-Ca2P2O7. They were satisfied with Ca/P mole ratio 1.5 and were heated at 150$0^{\circ}C$ for 5 hours. In the hydration of $\alpha$-TCP samples the powder which was synthesized from HAp and $\beta$-Ca2P2O7 was hydrated faster than that from CaHPO4.2H2O and CaCO3. The hydration reaction of $\alpha$-TCP powder transformed rapidly into HAp accompanying setting and hardening. It was realized that the hydration reaction of $\alpha$-TCP was due to the solution-precipitation mechanism and the hydrates from the reaction were Ca-deficient HAp having funtional group HPO42-.

  • PDF

Influence of thermal treatment on the dissolution of hydroxyapatite powders in simulated body fluid (수산화아파타이트 분말의 열처리가 유사생체용액 내 용해거동에 미치는 영향)

  • Song, Dae-Sung;Seo, Dong-Seok;Lee, Jong-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • Commercial hydroxyapatite (HA) powders were calcined at the temperature range of $1000{\sim}1350^{\circ}C$ in air, for 2h, and the calcined powders were immersed in simulated body fluid (SBF) of pH 7.4 at $37^{\circ}C$ for 3 or 7 days. Thermal decomposition and their related dissolution behaviors of hydroxyapatite were investigated by XRD, FT-IR, and TEM. At the temperature of $1200^{\circ}C$, HA gradually releases its $OH^-$ ions and transforms to OHAP((oxyhydroxyapatite, ($Ca_{10}(PO_4)_6O_x(OH)_{2-2x}$)). HA thermally decomposes to ${\alpha}-TCP$ (${\alpha}-tricalcium$ phosphate) and TTCP (tetracalcium phosphate) phase at $1350^{\circ}C$. It was found that the surface dissolution of the hydroxyapatite powders was accelerated by non-stoichiometric composition and decomposed to ${\alpha}-TCP$ and TTCP.

Processing and Properties of 30 wt% β-Tricalcium Phosphate/Al2O3 Composites (30 wt% β-Tricalcium Phosphate/Al2O3 복합재료의 제조 및 특성)

  • Jeong, Heecheol;Ha, Jung-Soo
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.142-147
    • /
    • 2018
  • ${\beta}-Tricalcium$ phosphate (TCP) was added to $Al_2O_3$ to make a biomaterial with good mechanical properties. Using a TCP powder synthesized by a polymer complexation method, $Al_2O_3$ composites containing 30 wt% TCP were fabricated and characterized for densification, phase, microstructure, strength, and fracture toughness. With optimizing the powder preparation conditions, a high densification of 97 % was obtained by sintering at $1350^{\circ}C$ for 2 h. No reaction between the two components occurred and there was no transition to ${\alpha}-TCP$. TCP grains with a size of $2-4{\mu}m$ were well surrounded by $Al_2O_3$ grains with a size of $1{\mu}m$ or less. Strength 61(Brazilian) or 187(3-p MOR) MPa, and fracture toughness 1.7 (notched beam) or 2.5 (indentation) $MPa{\cdot}m^{1/2}$ were obtained, which are large improvements over the strength of $TCP/Al_2O_3$ composites and toughness of TCP and hydroxyapatite in previous studies.

Suspension Polymerization of Styrene with Tricalcium Phosphate as Stabilizer

  • Hong, Soon-Gil;Park, Moonsoo
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.247-252
    • /
    • 2000
  • Suspension polymerizations of styrene were conducted in the aqueous phase with tricalcium phosphate (TCP) as a stabilizer and $\alpha$, $\alpha$'-azobis(isobutyronitrile) (AIBN) as an initiator. Various amounts of initiator and stabilizer were selected and the reaction was carried out at a selected temperature between 60 to 80 $\^{C}$. It was found that the combination of 5 wt% stabilizer and 2.427$\times$10$\^$-3/ mol/L of costabilizer is the minimum amount for suspension polymerization reaction to produce particles in the aqueous phase. Particles were found to be polydisperse in diameter, regardless of reaction conditions. Class transitions were observed to be around 95$\^{C}$, nearly independent of reaction temperature and initiator. Homogenizer was found to be essential in forming particles in the proximity of tens of micrometers in diameter in suspension polymerization with TCP as stabilizer.

  • PDF

Properties of the Ceramic Composites and Glass-Ceramics Prepared by Using the Natural Hydroxyapatite Derived from Tuna bone (참치 뼈에서 추출한 천연 Hydroxyapatite를 이용한 세라믹 복합체 및 Glass-Ceramics의 특성)

  • Choi, Jin-Sam;Lee, Chang-Kook;Jeon, You-Jin;Byun, Hee-Guk;Kim, Se-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.394-399
    • /
    • 1999
  • As the prosthetic application of natural mineral substituted for chemical reagent, composites and a glass-ceramics containing hydro-xyapatite isolated from tuna bone were prepared by solid state reaction. On x-ray examinations, the major phases of composites were identified as pseudowollastonite(${\alpha}-CaSiO_3$) and ${\beta}$-tricalcium phosphate($\beta$-TCP) and the phase of a glass-ceramics was observed as $\beta$-TCP and fluoroapatite caused by $CaF_2$ respectively. SEM images depict that the microstructures of grain at the composites were a function of temperature. The measured strength of a glass-ceramics prepared at $900^{\circ}C$ for 4 hr in air was 90 MPa as a 4-point bending method and this value was similar to the cortical bone, as 50~150 MPa but it was lower than its maximum strength.

  • PDF

Synthesis and Properties of Self-hardening Calcium Phosphate Cemetns for Biological Application

  • Song, Tae-Woong;Kim, Han-Yeop
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.129-133
    • /
    • 1997
  • Fine powder of $\alpha$-tricalcium phosphate, tetracalcium phosphate and dicalcium phosphate were mixed together to prepare self-setting cements which form hydroxyapatite, one of the well-known biocompatible materials, as the end of products of hydration. Hardening behaviour of the cements was examined at the temperature range of 37~$70^{\circ}C$ and 150~$250^{\circ}C$ under the normal and hydrothermal condition respectively. The conversion of cements into hydroxyapatite was significantly improved ast elevated temperature and the paste was strengtheed by interlocking of hydroxyapatite crystals, indicating that the strength is determined by microtexture rather the amount of conversion of cements into hydroxyapatite.

  • PDF

Effects of Particle Size Distribution of CaHPO4·2H2O on Self-hardening Bone Cement

  • Hwang, In-Soo;Cho, Sang-Hwan;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.730-734
    • /
    • 2003
  • This research examined the effect, which it follows in particle size distribution change of CaHPO$_4$ㆍ2$H_{2}O$ (DCPD). We used two kinds of compositions; tetracalcium phosphate (TTCP)/dicalcium phosphate dihydrate (DCPD) composition and $\alpha$-tricalcium phosphate ($\alpha$-TCP)TTCP/DCPD composition. As the result, the mean particle size of the DCPD decreased, the setting tine shortened at all compositions. The reference powder (DR), which did not milling, showed about 2 times strength value compared with other milling sample. Especially, the compressive strength of 60 : 20 : 20 sample (DR(do$_{0.5}$)=12.08 $\mu\textrm{m}$) after curing 7 days in simulated body fluid solution was 40$\pm$0.5 MPa, which was the highest. This resulted from the packing density at $\alpha$-TCP/TTCP/DCPD combination.

Preparation and Compressive Strength of Hydroxyapatite/Gelatin Composite (Hydroxyapatite/Gelatin복합체의 제조 및 압축강도)

  • Shin Hyo-Soon;Koo Kwang-Mo;Lee Suk-Kee
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.715-721
    • /
    • 2004
  • Hydroxyapatite (HAp)/Gelatin (GEL) homogeneous composites of four different composition ratio were prepared by the co-precipitation process with synthetic HAp and GEL as a binder, HAP/GEL composites were molding by cold isostatic pressing and were sintering by various condition in air. Crystallinity and structure of sintered HAp/GEL composites were investigated by XRD and FTIR. Also, the compressive strength and the fracture surface of sintered specimens were measured by UTM and SEM. HAp/GEL composites showed a phase transformation to partially ${\alpha}$, ${\beta}$-tricalcium phosphate at the sintered condition of 1200$^{\circ}C$ for 3 h. The porosity of sintered body was in the range of 1.2-30.2%. The compressive strength of the sintered specimens was in the range of 16.2-60.1㎫, and its strength of sintered HAp/GEL comosites was higher than expected when the porosity was considered.

Sintering Behavior and Mechanical Strength of Hydroxyapatite/Polyacrylic Acid Homogeneous Composite (Hydroxyapatite/Polyacrylic Acid 균질복합체의 소결 특성 및 기계적 강도)

  • 이병교;이석기;구광모;이미혜;이형동
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.566-571
    • /
    • 2003
  • Hydroxyapatite (HAp)/Polyacrylic Acid(PAA) homogeneous composites of four different composition ratio were preparation by co-precipitation process with synthetic HAp and PAA as a binder. HAP/PAA composites were molding by cold isostatic pressing and were sintering by various condition in air. Crystallinity and structure of sintered HAp/PAA composites were investigated by XRD and FT-IR. Also, the compressive strength and the fracture surface of sintered specimens were measured by UTM and SEM. HAp/PAA composites were showed phase transformation of partially ${\alpha}$, ${\beta}$-tricalcium phosphate at sintering condition of 1200$^{\circ}C$ and 3 h. The pore size and porosity of sintered body were showed the range of 0.2∼3.0 $\mu\textrm{m}$ and 0.49∼13.43%, respectively. The compressive strength of sintered specimens were appeared the range of 36.6∼58.2 MPa. From these results, the sintered HAp/PAA comosites can be accounted for the microporous HAp having a good compressive strength due to homogeneous pore morphology.