• 제목/요약/키워드: ${\alpha}$-Keto acids

검색결과 19건 처리시간 0.021초

HPLC법에 의한 1,2-디아미노-4,5-메틸렌디옥시벤젠을 형광유도체화제로 한 혈청 및 뇨 중의 ${\alpha}$-케토산의 분석 (Determination of ${\alpha}-Keto$ Acids in Serum and Urine Using 1,2-Diamino-4,5-methylendioxybenzene as a Fluorescent Derivatizating Agent by High Performance Liquid Chromatography)

  • 옥치완;김대기;박송자;박종세
    • 약학회지
    • /
    • 제36권4호
    • /
    • pp.370-378
    • /
    • 1992
  • A simple and sensitive high performance liquid chromatographic method to quantitate ${\alpha}-keto$ acids in serum and urine was investigated. ${\alpha}-Keto$ acids react with 1,2-diamino-4,5-methylenedioxybenzene (DMB) in the presence of 2-mercapto-ethanol and sodium hydrogen sulfite to form highly fluorescent derivatives, substituted 6,7-methylenedioxyquinoxalinol. The derivatization procedure was performed in water bath at $100^{\circ}C$, and completed within 50 min. By the use of a reversed-phase column and multi-step gradient with two solvents, a mixture containing twelve of these derivatives were efficiently resolved within 35 minutes. The optimal wavelengh of the fluorescence detector are ${\lambda}_{ex}=364\;nm$ and ${\lambda}_{em}=445\;nm$. The quantitation of the individual ${\alpha}-Keto$ acids was reproducible with relative standard deviation of $3.0{\sim}7.9%$ and had a detection limits of $10{\sim}60$ fmol, except for p-hydroxyphenylpyruvic acid (960 fmol).

  • PDF

Synthesis of α-Ketobutyrolactones and γ-Hydroxy-α-Keto Acids

  • Kang, Han-Young;Ji, Yu-Mi;Yu, Yeon-Kwon;Yu, Ji-Yeon;Lee, Young-Hoon;Lee, Sang-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권12호
    • /
    • pp.1819-1826
    • /
    • 2003
  • In connection with the studies for developing new enzymes that could be useful in organic synthesis, practical preparation of racemic and enantiopure forms of ${\gamma}$-hydroxy-${\alpha}$-keto acids has been successfully achieved. For racemic form of ${\gamma}$-hydroxy-${\alpha}$-keto acids, indium-mediated allylation of aldehydes with 2-(bromomethyl)acrylic acid has been employed as a key step. Oxidative cleavage of the thus formed 2-methylenebutyrolactones provided the desired ${\alpha}$-ketobutyrolactones. Enzymatic resolution of the ${\gamma}$-hydroxy-${\alpha}$-methylene esters provided the desired${\gamma}$-hydroxy-${\alpha}$-methylene acids which were successfully converted to ${\gamma}$-hydroxy-${\alpha}$-ketobutyrolactones in optically pure forms.

A New Synthesis of Triphenylphosphorane Ylide Precursors to α-Keto Amide/Ester and Tricarbonyl Units via Horner-Wadsworth-Emmons Reaction

  • Lee, Kie-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2776-2782
    • /
    • 2010
  • Newly developed Horner-Wadsworth-Emmons (HWE) reagents 5 having triphenylphosphorane ylide subunits readily condensed with various carbonyl compounds under mild reaction conditions to afford $\beta,\gamma$-unsaturated $\alpha$-keto triphenylphorane ylides in good to excellent yields, which were hydrogenated over Pd-C (10%)/$H_2$ (1 atm) to give the corresponding $\alpha$-keto triphenylphorane ylides in quasi-quantitative yields. These triphenyphosphorane ylides have been utilized as the precursors to $\alpha$-keto amide/ester and vicinal tricarbonyl units in Wasserman's synthetic protocols, and have previously been prepared only from carboxylic acids/acid chlorides. Our new approaches provide excellent alternatives for the synthesis of triphenylphosphorane ylide precursors to $\alpha$-keto amide/ester and vicinal tricarbonyl units directly from carbonyl compounds in good to excellent yields.

Inhibition of the Biodegradative Threonine Dehydratase from Serratia marcescens by ${\alpha}$-Keto Acids and Their Derivatives

  • Choi, Byung-Bum;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.118-123
    • /
    • 1995
  • Biodegradative threonine dehydratase was purified to homogeneity from Serratia marcescens ATCC 25419 by streptomycin sulfate treatment, Sephadex G-200 gel filtration chromatography followed by AMP-Sepharose 4B affinity chromatography. The molecular weight of the purified enzyme was 118,000 by fast protein liquid chromatography using superose 6-HR. The enzyme was determined to be a homotetrameric protein with subunit molecular weights of 30,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was inhibited by ${\alpha}-Keto$ acids and their derivatives such as ${\alpha}-ketobutyrate$, pyruvate, glyoxlyate, and phosphoenol pyruvate, but not by ${\alpha}-aminobutyrate$ and ${\alpha}-hydroxybutyrate$. The inhibition of the enzyme by pyruvate and glyoxylate was observed in the presence of AMP. The inhibitory effect of glyoxylate was decreased at high enzyme concentration, whereas the inhibition by pyruvate was independent of the enzyme concentration. The kinetics of inhibition of the enzyme by pyruvate and glyoxylate revealed a noncompetitive and mixed-type inhibition by the two inhibitors with respect to L-threonine and AMP, respectively.

  • PDF

Determination of Branched-Chain α-Keto Acid Dehydrogenase Activity in Rat Tissues

  • Kim, Hyun-Sook;Johnson, Wayne A.
    • BMB Reports
    • /
    • 제28권1호
    • /
    • pp.12-16
    • /
    • 1995
  • The branched-chain ${\alpha}$-keto acid dehydrogenase (BCKAD) complex is a rate limiting enzyme which catalyzes the oxidative decarboxylation of branched-chain ${\alpha}$-keto acids. Numerous studies have suggested that BCKAD is subject to covalent modification in vitro via phosphorylation and dephosphorylation, which are catalyzed by a specific kinase and phosphatase, respectively. The biggest difficulty in the assay of BCKAD activity is to arrest the interconversion between the active and inactive forms. BCKAD activity was determined from fresh rat heart and liver tissues using homogenizing and assay buffers containing inhibitors of phosphatase and kinase. The results suggest that a radiochemical assay using ${\alpha}$-keto[1-$^{14}C$]-isovalerate as a substrate for the enzyme can be applied as a reliable method to determine in vitro enzyme activity with arrested interconversion between the active and inactive forms of the BCKAD complex.

  • PDF

Peroxy Acid Oxidations: A Kinetic and Mechanistic Study of Oxidative Decarboxylation of $\alpha$-Keto Acids by Peroxomonophosphoric Acid

  • Radhasyam Panda
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권8호
    • /
    • pp.909-913
    • /
    • 2001
  • The kinetics of oxidative decarboxylation of pyruvic acid and benzoylformic acid by peroxomonophosphoric acid (PMPA) in aqueous medium have been investigated. The reaction follows second order-first order each in PMPA and substrate concentration a t constant pH. The reactivity of different peroxo species in the oxidation has been determined. Activation energy and thermodynamic parameters have been computed. A plausible mechanism consistent with the observed results is proposed.

Modulation of Branched-Chain Amino Acid Metaolism by Exercise in Rats

  • Kim, Hyun-Sook
    • Journal of Nutrition and Health
    • /
    • 제27권9호
    • /
    • pp.892-900
    • /
    • 1994
  • A variety of important roles for branched-chain amino acids in metabolic regulation has been suggested. Branched-chain $\alpha$-keto acid dehydrogenase(BCKAD) complex is a rate limiting enzyme in branched-chain amino acid metabolism. The purpose of this study was to examine the effects of exercise on the activity and activity state of branched-chain $\alpha$-keto acid dehydrogenase in rat hert and liver thssues. Forty-eight Sprague-Dawley rats were assigned into three experimental groups : sedentary control, exercised, or exercised-rested. Submaximal exercise(running) for two hours significantly increased basal activity without a change in total activity in both tissues, with a concomitiant increase in activity state of the enzyme complex. At 10 min post-exercise, heart enzyme activity significantly decreased, though not to the control level, while liver enzyme activity remained unchanged. These data suggested that the exercise-induced increase in branched-chain $\alpha$-keto acid decarboxylation in rat tissues may not be the result of enzyme synthesis, but rather is due to increased activity of the BCKAD.

  • PDF

단풍당뇨증의 식이요법과 급성대상부전의 치료 (Maple Syrup Urine Disease : Longterm Diet Therapy and Treatment of Acute Metabolic Decompensation)

  • 이홍진;배은주;박원일;이경자
    • 대한유전성대사질환학회지
    • /
    • 제3권1호
    • /
    • pp.4-14
    • /
    • 2003
  • Maple syrup urine disease or branched chain ketoacidurias caused by a deficiency in activity of the branched-chain ${\alpha}$-keto acid dehydrogenase(BCKD) complex. This metabolic block results in the accumulation of the branched-chain amino acids(BCAAs) leucine, isoleucine and valine, and the corresponding branched chain ${\alpha}$-keto acids (BCKAs). Based on the clinical presentation and biochemical responses to thiamine administration, MSUD patients can be divided into five phenotypes : classic, intermediate, intermittent, thiamine responsive and dihydrolipoyl dehydrogenase(E3)-deficient. Classic MSUD has a neonatal onset of encephalopathy, and is the most severe ad most common form. Variant forms of MSUD generally have the initial symptoms by 2 years of age. The majority of untreated classic patients die within the early months of life from recurrent metabolic crisis and neurologic deterioration. Treatment involves both longterm dietary management and aggressive intervention during acute metabolic decompensation. We report here our experience of longterm diet therapy and treatment of acute metabolic decompensation of a case of classic MSUD.

  • PDF

Asymmetric Sythesis of Unnatural L-Amino Acids Using Thermophilic Aromatic L-Amino Acid Transaminase

  • Cho, Byung-Kwan;Seo, Joo-Hyun;Kim, Ju-Han;Lee, Chang-Soo;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권4호
    • /
    • pp.299-305
    • /
    • 2006
  • Aromatic L-amino acid transaminase is an enzyme that is able to transfer the amino group from L-glutamate to unnatural aromatic ${\alpha}-keto$ acids to generate ${\alpha}-ketoglutarate$ and unnatural aromatic L-amino acids, respectively. Enrichment culture was used to isolate thermophilic Bacillus sp. T30 expressing this enzyme for use in the synthesis of unnatural L-amino acids. The asymmetric syntheses of L-homophenylalanine and L-phenylglycine resulted in conversion yields of >95% and >93% from 150 mM 2-oxo-4-phenylbutyrate and phenylglyoxylate, respectively, using L-glutamate as an amino donor at $60^{\circ}C$. Synthesized L-homophenylalanine and L-phenylglycine were optically pure (>99% enantiomeric excess) and continuously pre-cipitated in the reaction solution due to their low solubility at the given reaction pH. While the solubility of the ${\alpha}-keto$ acid substrates is dependent on temperature, the solubility of the unnatural L-amino acid products is dependent on the reaction pH. As the solubility difference between substrate and product at the given reaction pH is therefore larger at higher temperature, the thermophilic transaminase was successfully used to shift the reaction equilibrium toward rapid product formation.