• Title/Summary/Keyword: ${\alpha}$-Diimine

Search Result 6, Processing Time 0.018 seconds

Polymerizations of Propylene with Unsymmetrical ($\alpha$-Diimine)nickel(II) Catalysts

  • Jeon Man-Seong;Han Chul-Jong;Kim Sang-Youl
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.306-311
    • /
    • 2006
  • New unsymmetrical ($\alpha$-Diimine)nickel(II) catalysts having different pendent groups at the ortho positions on aromatic rings were synthesized and subjected to propylene polymerizations with MAO (methylaluminoxane). Structural analyses of the resulting polypropylenes by $^1H\;and\;^{13}C\;NMR$ showed that the ortho substituents on aromatic rings of ($\alpha$-diimine)nickel(II) catalyst affected significantly the polypropylene microstructure. While $C_s$ symmetric catalyst afforded a syndiotactic polypropylene (rr triad content=66%) due to the syndiospecific chain end control, $C_1$ symmetric catalysts produced much less stereoregular polypropylenes (rr triads content <50%), presumably because of collision of the isospecific site control with the syndiospecific chain end control.

Polymerization of Methyl Methacrylate with Nickel $\alpha$-Diimine Catalysts: Effect of the Methyl Position in the Ligand

  • Kim, Il;Kim, Jae-Sung;Han, Byeong-Heui;Ha, Chang-Sik
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.514-517
    • /
    • 2003
  • In the solution polymerizations of methyl methacrylate with (${\alpha}$-diimine)nickel(II)/methylaluminoxane (MAO), we observed effects of the position of two methyl substituents in the ligand on both the activities of the catalysts and the polymer microstructure. ${\alpha}$-Diimine nickel(II) catalysts gave syndiotactic-rich poly(methyl methacrylate) with high molecular weight and narrow molecular weight distribution.

Comparative Study of Emission Quenching of Tris(${\alpha},{\alpha}'$-diimine)-Ruthenium(II) Complexes in Homogeneous and Sodium Dodecyl Sulfate Micellar Solutions

  • Park, Joon-Woo;Nam, Eun-Jin;Ahn, Byung-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.686-691
    • /
    • 1991
  • Emission quenching of photoexcited tris(${\alpha},{\alpha} '$-diimine)-ruthenium(II) complex cations, $RuL_3^{2+}$ (L: 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine; 4,4'-diphenyl-2,2'-bipyridine; 1,10-phenanthroline; 5-methyl-1,10-phenanthroline; 5,6-dimethyl-1,10-phenanthroline or 4,7-diphenyl-1,10-phenanthroline) by $Cu^{2+}$, dimethylviologen $(MV^{2+})$, nitrobenzene (NB), and oxygen was studied in aqueous homogeneous and sodium dodecyl sulfate (SDS) micellar solutions. The apparent bimolecular quenching rate constants $k_q$ were determined from the quenching data and life-times of $^{\ast}RuL_3^{2+}$. In homogeneous media, the quenching rate was considerably slower than that for the diffusion-controlled reaction. The decreasing order of quenching activity of quenchers was $NB>O_2>MV^{2+}>Cu^{2+}$. The rate with $Cu^{2+}$ was faster as the reducing power of $^{\ast}RuL_3^{2+}$ is greater. On the other hand, the rates with NB and $O_2$ were faster as the ligand is more hydrophobic. This was attributed to the stabilization of encounter pair by van der Waals force. The presence of SDS enhanced the rate of quenching reactions with $Cu^{2+}$ and $MV^{2+}$, whereas it attenuated the quenching activity of NB and $O_2$ toward $RuL_3^{2+}$. The binding affinity of quenchers to SDS micelle and binding sites of the quenchers and $RuL_3^{2+}$ in micelle appear to be important factors controlling the micellar effect on the quenching reactions.