• Title/Summary/Keyword: ${\Psi}$-Hilfer fractional derivative

Search Result 3, Processing Time 0.009 seconds

ON THE STABILITY OF DIFFERENTIAL SYSTEMS INVOLVING 𝜓-HILFER FRACTIONAL DERIVATIVE

  • Limpanukorn, Norravich;Ngiamsunthorn, Parinya Sa;Songsanga, Danuruj;Suechoei, Apassara
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.513-532
    • /
    • 2022
  • This paper deals with the stability of solutions to 𝜓-Hilfer fractional differential systems. We derive the fundamental solution for the system by using the generalized Laplace transform and the Mittag-Leffler function with two parameters. In addition, we obtained some necessary conditions on the stability of the solutions to linear fractional differential systems for homogeneous, non-homogeneous and non-autonomous cases. Numerical examples are also given to illustrate the behavior of solutions.

Global Existence and Ulam-Hyers Stability of Ψ-Hilfer Fractional Differential Equations

  • Kucche, Kishor Deoman;Kharade, Jyoti Pramod
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.647-671
    • /
    • 2020
  • In this paper, we consider the Cauchy-type problem for a nonlinear differential equation involving a Ψ-Hilfer fractional derivative and prove the existence and uniqueness of solutions in the weighted space of functions. The Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the Cauchy-type problem is investigated via the successive approximation method. Further, we investigate the dependence of solutions on the initial conditions and their uniqueness using 𝜖-approximated solutions. Finally, we present examples to illustrate our main results.

MULTI-ORDER FRACTIONAL OPERATOR IN A TIME-DIFFERENTIAL FORMAL WITH BALANCE FUNCTION

  • Harikrishnan, S.;Ibrahim, Rabha W.;Kanagarajan, K.
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.119-129
    • /
    • 2019
  • Balance function is one of the joint factors to determine fall in risk theory. It helps to moderate the progression and riskiness of falls for detecting balance and fall risk factors. Nevertheless, the objective measures for balance function require expensive equipment with the assessment of any expertise. We establish the existence and uniqueness of a multi-order fractional differential equations based on ${\psi}$-Hilfer operator on time scales with balance function. This class describes the dynamic of time scales derivative. Our tool is based on the Schauder fixed point theorem. Here, sufficient conditions for Ulam-stability are given.