• Title/Summary/Keyword: $^3He$ proportional counter

Search Result 3, Processing Time 0.018 seconds

The Effect of Photoneutron Dose in High Energy Radiotherapy (10 MV 이상 고에너지 치료 시 발생되는 광중성자의 영향)

  • Park, Byoung Suk;Ahn, Jong Ho;Kwon, Dong Yeol;Seo, Jeong Min;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • Purpose: High-energy radiotherapy with 10 MV or higher develops photoneutron through photonuclear reaction. Photoneutron has higher radiation weighting factor than X-ray, thus low dose can greatly affect the human body. An accurate dosimetric calculation and consultation are needed. This study compared and analyzed the dose change of photoneutron in terms of space according to the size of photon beam energy and treatment methods. Materials and Methods: To measure the dose change of photoneutron by the size of photon beam energy, patients with the same therapy area were recruited and conventional plans with 10 MV and 15 MV were each made. To measure the difference between the two treatment methods, 10 MV conventional plan and 10 MV IMRT plan was made. A detector was placed at the point which was 100 cm away from the photon beam isocenter, which was placed in the center of $^3He$ proportional counter, and the photoneutron dose was measured. $^3He$ proportional counter was placed 50 cm longitudinally superior to and inferior to the couch with the central point as the standard to measure the dose change by position changes. A commercial program was used for dose change analysis. Results: The average integral dose by energy size was $220.27{\mu}Sv$ and $526.61{\mu}Sv$ in 10 MV and 15 MV conventional RT, respectively. The average dose increased 2.39 times in 15 MV conventional RT. The average photoneutron integral dose in conventional RT and IMRT with the same energy was $220.27{\mu}Sv$ and $308.27{\mu}Sv$ each; the dose in IMRT increased 1.40 times. The average photoneutron integral dose by measurement location resulted significantly higher in point 2 than 3 in conventional RT, 7.1% higher in 10 MV, and 3.0% higher in 15 MV. Conclusion: When high energy radiotherapy, it should consider energy selection, treatment method and patient position to reduce unnecessary dose by photoneutron. Also, the dose data of photoneutron needs to be systematized to find methods to apply computerization programs. This is considered to decrease secondary cancer probabilities and side effects due to radiation therapy and to minimize unnecessary dose for the patients.

  • PDF

The development of conductive 10B thin film for neutron monitoring (중성자 모니터링을 위한 전도성 10B 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Jung, Yongju;Choi, Young-Hyun;Baek, Cheol-Ha;Moon, Myung-Kook
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.199-205
    • /
    • 2014
  • In the field of neutron detections, $^3He$ gas, the so-called "the gold standard," is the most widely used material for neutron detections because of its high efficiency in neutron capturing. However, from variable causes since early 2009, $^3He$ is being depleted, which has maintained an upward pressure on its cost. For this reason, the demands for $^3He$ replacements are rising sharply. Research into neutron converting materials, which has not been used well due to a neutron detection efficiency lower than the efficiency of $^3He$, although it can be chosen for use in a neutron detector, has been highlighted again. $^{10}B$, which is one of the $^3He$ replacements, such as $BF_3$, $^6Li$, $^{10}B$, $Gd_2O_2S$, is being researched by various detector development groups owing to a number of advantages such as easy gamma-ray discrimination, non-toxicity, low cost, etc. One of the possible techniques for the detection is an indirect neutron detection method measuring secondary radiation generated by interactions between neutrons and $^{10}B$. Because of the mean free path of alpha particle from interactions that are very short in a solid material, the thickness of $^{10}B$ should be thin. Therefore, to increase the neutron detection efficiency, it is important to make a $^{10}B$ thin film. In this study, we fabricated a $^{10}B$ thin film that is about 60 um in thickness for neutron detection using well-known technology for the manufacturing of a thin electrode for use in lithium ion batteries. In addition, by performing simple physical tests on the conductivity, dispersion, adhesion, and flexibility, we confirmed that the physical characteristics of the fabricated $^{10}B$ thin film are good. Using the fabricated $^{10}B$ thin film, we made a proportional counter for neutron monitoring and measured the neutron pulse height spectrum at a neutron facility at KAERI. Furthermore, we calculated using the Monte Carlo simulation the change of neutron detection efficiency according to the number of thin film layers. In conclusion, we suggest a fabrication method of a $^{10}B$ thin film using the technology used in making a thin electrode of lithium ion batteries and made the $^{10}B$ thin film for neutron detection using suggested method.

Development of B4C Thin Films for Neutron Detection (스퍼터링 코팅기법을 이용한 중성자 검출용 B4C 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Cho, Sang-Jin;Choi, Young-Hyun;Park, Jong-Won;Moon, Myung Kook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.79-86
    • /
    • 2015
  • $^3He$ gas has been used for neutron monitors as the neutron converter owing to its advantages such as high sensitivity, good ${\gamma}$-discrimination capability, and long-term stability. However, $^3He$ is becoming more difficult to obtain in last few years due to a global shortage of $^3He$ gas. Accordingly, the cost of a neutron monitor using $^3He$ gas as a neutron converter is becoming more expensive. Demand on a neutron monitor using an alternative neutron conversion material is widely increased. $^{10}B$ has many advantages among various $^3He$ alternative materials, as a neutron converter. In order to develop a neutron converter using $^{10}B$ (actually $B_4C$), we calculated the optimal thickness of a neutron converter with a Monte Carlo simulation using MCNP6. In addition, a neutron converter was fabricated by the Ar sputtering method and the neutron signal detection efficiencies were measured with respect to various thicknesses of fabricated a neutron converter. Also, we developed a 2-dimensional multi-wire proportional chamber (MWPC) for neutron beam profile monitoring using the fabricated a neutron converter, and performed experiments for neutron response of the neutron monitor at the 30 MW research reactor HANARO at the Korea Atomic Energy Research Institute. The 2-dimensional MWPC with boron ($B_4C$) neutron converter was proved to be useful for neutron beam monitoring, and can be applied to other types of neutron imaging.