• Title/Summary/Keyword: $^1H$-Nuclear Magnetic Resonance

Search Result 309, Processing Time 0.029 seconds

Isolation of Bacillus subtilis GS-2 Producing γ-PGA from Ghungkukjang Bean Paste and Identification of γ-PGA (청국장으로부터 분리한 Poly(γ-glutamic acid)를 생산하는 균주 Bacillus subtilis GS-2의 분리 및 γ-PGA의 확인)

  • Bang, Byung-Ho;Jeong, Eun-Ja;Rhee, Moon-Soo;Kim, Yong-Min;Yi, Dong-Heui
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • ${\gamma}$-PGA(poly-${\gamma}$-glutamic acid) is an unusual anionic polypeptide that is made of D- and L-glutamic acid units connected by amide linkages between ${\alpha}$-amino and ${\gamma}$-carboxylic acid groups. ${\gamma}$-PGA has been isolated from many kinds of organisms. Many Bacillus strains produce ${\gamma}$-PGA as a capsular material of an extracellular viscous material. It is safe for eating as a viscosity element of fermented soybean products such as Chungkookjang and Natto. It is biodegradable, edible and nontoxic toward humans and the environment and its molecular weight varies from ten thousand to several hundred thousand depending on the kinds of strains used. Therefore, potential applications of ${\gamma}$-PGA and its derivatives have been of interest in the past few years in a broad range of industrial fields such as food, cosmetics, medicine, water-treatment, etc. In this study, a bacterium, Bacillus subtilis GS-2 isolated from the Korean traditional seasoning food, Chungkookjang could produce a large amount of ${\gamma}$-PGA with high productivity and had a simple nutrient requirement. Based on carbon utilization pattern and partial 16S rRNA sequence analysis, the GS-2 strain was identified as B. subtilis. The determination of purified ${\gamma}$-PGA was confirmed with thin layer chromatography (TLC), high performance liquid chromatography (HPLC), fourier transform infrared (FT-IR) spectra, and $^1H$-nuclear magnetic resonance ($^1H$-NMR) spectroscopy.

Isolation of 20(S)-Ginsenoside Rg3 and Rg5 from the Puffed Red Ginseng (팽화 홍삼으로부터 20(S)-Ginsenoside Rg3와 Rg5의 분리 및 구조동정)

  • An, Young-Eun;Cho, Jin-Gyeong;Baik, Nam-In;Choi, Sung-Won;Hur, Nam-Yoon;Park, Seok-Jun;Kim, Byung-Yong;Baik, Moo-Yeol
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.159-165
    • /
    • 2010
  • Red ginseng tail roots (9.8 g water/100 g sample) were puffed at 7, 8, 9, and 10 $kg_{f}/cm^{2}$ using a rotational puffing gun. Puffed red ginseng was extracted with 70% ethanol, and the concentrated extract was successively partitioned with diethyl ether, n-butanol and $H_{2}O$. Two unknown ginsenosides from puffed red ginseng were found at 63 and 65 min of retention time in HPLC chromatogram suggesting that chemical structure of some ginsenosides might be altered during the puffing process. Identification of two unknown compounds was carried out using TLC, HPLC and NMR. Two major compounds were isolated from TLC. According to TLC result, compound I was expected to be the mixture of ginsenosides Rk1 and Rg5, and compound II was expected to be a 20(S)-ginsenoside $Rg_{3}$. Three compounds were isolated from n-butanol fraction through repeated silica gel and octadecyl silica gel column chromatographies. From the result of $^{1}H$- and $^{13}C$-NMR data, the chemical structures of unknown compounds were determined as ginsenoside $Rg_{5}$ and 20(S)-ginsenoside $Rg_{3}$. Unfortunately, ginsenoside $Rk_{1}$ could not be separated from ginsenoside-$Rg_{5}$ in the compound I. It was carefully reexamined using HPLC and confirmed that the last unknown compound was ginsenoside-$Rk_{1}$.

Research fecal metabolite according to fed different ratios of roughage to concentrate on lactating cow using 1H-NMR analysis (조사료와 농후사료 급여비율에 따른 젖소 우분의 대사체 탐색)

  • Kim, Hyun Sang;Lee, Shin Ja;Eom, Jun Sik;Lee, Sung Sill
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.432-439
    • /
    • 2020
  • This study examined the metabolites in different roughage to concentrate ratios using proton nuclear magnetic resonance spectroscopy (1H-NMR). Six lactating cows were divided into two groups that were fed different roughage to concentrate ratios (HR group = 8:2, HC group = 2:8). Feces samples were collected individually at one time, and the metabolites were analyzed using an SPE-800 MHz NMR-MS system. The metabolites were identified and quantified using a Chenomx NMR suite 8.4. Metabolic pathway analysis and principal component analysis were conducted using a Metaboanalyst 4.0. Statistical analysis was performed using a Dunnett's test on the SAS program. As a result, several metabolites were identified, and among them, 77 metabolites were used in statistical analysis. The levels of twelve metabolites were significantly higher in the HC group: succinate, dimethylamine, histamine, homovanillate, thymol, acetate, propionate, butyrate, isovalerate, valerate, imidazole, N-nitrosodimethylamine, and O-acetylcholine. In the HC group, the concentrations of all metabolites were higher than in the HR group, and the metabolic pathway was also different. This study is expected to be useful for a variety of livestock studies by 1H-NMR because it examined the change in metabolites in the body metabolism and microorganisms.

Isolation and Identification of Adenosine and Phlomuroside from the Aerial Parts of Oryza sativa L. (벼(Oryza sativa L.)의 지상부로부터 adenosine과 phlomuroside의 분리 및 동정)

  • Jeong, Rak-Hun;Lee, Dae-Young;Cho, Jin-Gyeong;Baek, Yoon-Su;Seo, Kyeong-Hwa;Lee, Dong-Geol;Kang, Hee-Cheol;Kim, Ji-Young;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.321-324
    • /
    • 2014
  • Fresh and chopped aerial parts of Oryza sativa were extracted in 80% aqueous mehthanol, and the concentrated extract was successively partitioned in n-hexane, ethyl acetate (EtOAc), n-butanol (n-BuOH), and $H_2O$ fractions. From the n-BuOH fraction, two compounds were isolated through repeated silica gel and ODS column chromatography (c.c.). Based on nuclear magnetic resonance (NMR), mass spectrometry and infrared spectroscopy spectroscopic data, the compounds were identified to be adenosine (1) and phlomuroside (2). Especially, the configuration of both the anomer hydroxyl groups was determined as ${\beta}$ from the coupling constants of the anomer protons (J =6.0 and 7.6 Hz) in the $^1H-NMR$ spectra. This is the first report for the isolation of these compounds from Oryza sativa L.

Physical and Chemical characteristics of Cokes Using Ash-Free Coal as binder (무회분 석탄(AFC)을 바인더로 이용한 코크스의 물리적 및 화학적 특성)

  • Kim, Gyeong Min;Kim, Jin Ho;Lisandy, Kevin Yohanes;Kim, Gyu Bo;Choi, Ho Kyung;Jeon, Chung Hwan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.395-400
    • /
    • 2017
  • Coke strength was increased by adding ash-free coal (AFC) binder. In this study, the effect of the AFC binder on the physical and chemical properties of coke was experimentally investigated to understand the molecular mechanism for the improved coke strength. For reduced $CO_2$ emission in steelmaking industry, torrefied biomass fuel mixed with coal binder is also considered. The interface between the base coal and AFC was thus examined using Scanning Electron Microscope (SEM). The coke strength was commonly measured by performing the indirect tensile test and Nuclear Magnetic Resonance (NMR) spectroscopy in $^1H$ and $^{13}C$ modes. For comprehensive mechanism study of the enhanced coke strength thus obtained, ordinary coal for thermal power plant use was carbonized with AFC for subsequent SEM examination. The NMR spectroscopy results of coke samples positively revealed that the tensile strength was proportional to the average number of aromatic rings.

Production and Analysis of Oxygenated Unsaturated Fatty Acids from Oleic Acid by Flavobacterium sp. Strain DS5 (Flavobacterium sp. Strain DS5에 의한 Oleic Acid로부터 산화불포화 지방산의 생산 및 분석)

  • Song, Byung-Seob;Han, Nam-Soo;Lee, Bong-Hee;Hou, Ching T.;Kim, Beom-Soo
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • Vegetable oils are desirable inexpensive feedstocks for various bioproducts. The content of unsaturated fatty acids such as oleic and linoleic acids are 22% and 55% for soybean oil, 26% and 60% for corn oil, and 61% and 21% for canola oil, respectively. Keto and hydroxy fatty acids are useful industrial chemicals, used in plasticizer, surfactant, lubricant and detergent formulations because of their special chemical properties such as higher viscosity and reactivity compared with other fatty acids. In this study, a microbial isolate, Flavobacterium sp. strain DS5 (NRRL B-14859), was used to convert oleic acid to 10-ketostearic acid (10-KSA) via 10-hydroxystearic acid (10-HSA). Two bioconversion products, 10-KSA and 10-HSA, were quantitatively and qualitatively analyzed using gas chromatography, gas chromatography-mass spectrometry, and $^1H-$ and $^{13}C$-nuclear magnetic resonance. The maximum production of 10-KSA and 10-HSA in flask cultures were 3.4 g/L and 0.5 g/L, respectively. The optimum concentrations of glucose and yeast extract, addition time and volume of oleic acid for 10-KSA production were less than 20 g/L, more than 5 g/L, 18 hand 0.3 ml/50 ml, respectively.

Effect of Length of Alkyl Group on Thermal-Liquid Crystalline Properties of Cholesteryl 4-n-Alkoxybenzoate (알킬기의 길이가 콜레스테릴 4-n-알콕시벤조에이트의 열적-액정 특성에 미치는 영향)

  • Yoon, Doo-Soo;Bang, Moon-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.69-74
    • /
    • 2017
  • In this study, cholesteryl 4-n-alkoxybenzoates (Chol-n), with alkyl groups used for controlling the temperature of transition to the liquid crystal phase, were synthesized, and the effects of the length of the alkyl groups on the physical properties of the liquid crystal compounds were investigated. The chemical structures and thermal and liquid crystalline properties of the synthesized compounds were investigated by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy ($^1H$-NMR), differential scanning calorimetry (DSC), and polarizing optical microscopy (POM). The synthesized compounds showed melting transition temperatures ($T_m$) in the range of $103^{\circ}C$ to $143^{\circ}C$ and all of the compounds except Chol-6 exhibited a wide liquid crystal phase temperature range of about $60^{\circ}C$ to $100^{\circ}C$. No correlation between the number of carbon atoms in the molecule and the thermal properties of the compounds was found. All of the synthesized compounds showed an enantiotropic cholesteric phase, which was accompanied by a chiral smectic phase in the compounds Chol-6, Chol-8, Chol-9, and Chol-10. All of the compounds exhibited thermochromism in the liquid crystal state, and their color changed from red to blue as the temperature was increased.

Isolation and Identification of 3 Low-molecular Compounds from Pear (Pyrus pyrifolia Nakai cv. Chuhwangbae) Fruit Peel (추황배(Pyrus pyrifolia Nakai cv. Chuhwangbae) 과피로부터 3종의 저분자 화합물의 단리·동정)

  • Lee, Yu Geon;Cho, Jeong-Yong;Kim, Chan-Mi;Jeong, Hang-Yeon;Lee, DongI;Kim, Soo Ro;Lee, Sang-Hyen;Kim, Wol-Soo;Park, Keun-Hyung;Moon, Jae-Hak
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.174-179
    • /
    • 2013
  • Three low-molecular compounds were isolated from methanol extracts of pear (Pyrus pyrifolia N. cv. Chuhwangbae) fruit peels using solvent fractionation, various types of column chromatogrphy (Diaion HP-20, Sephadex LH-20, and silica gel), and high performance liquid chromatography with an assay guided by 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity. The isolated compounds were identified as 2-carboxyl-4(1H)-quinolinone (kynurenic acid, 1) from butanol fraction, cis-p-coumaric acid (2) from ethyl acetate-acidic fraction, and vanillin (3) from the ethyl acetate-phenolic fraction, respectively. These isolated compounds were confirmed on the basis of the spectroscopic data of electrospray ionization mass spectrometry and nuclear magnetic resonance. This is the first time that compounds 1-3 were isolated and identified in pear.

Isolation and Identification of Low Molecular Phenolic Antioxidants from Ethylacetate Layer of Korean Black Raspberry (Rubus coreanus Miquel) Wine (복분자(Rubus coreanus Miquel) 와인의 에틸아세테이트층으로부터 저분자 페놀성 항산화 화합물의 단리·동정)

  • Kim, Seong-Ja;Lee, Hyoung-Jae;Park, Keun-Hyung;Rhee, Chong-Ouk;Lim, Ik-Jae;Chung, Hee-Jong;Moon, Jae-Hak
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.129-134
    • /
    • 2008
  • Five antioxidative active substances were isolated from the EtOAc layer (20 g/56.2 g) of Korean black raspberry (Rubus coreanus Miquel) wine (11 L, black raspberry 15.7 kg fresh wt. eq.) by various column chromatography and high performance liquid chromatography (HPLC). Proton nuclear magnetic resonance ($^1H$-NMR) spectroscopy and gas chromatography Electro Ionization-Mass Spectrometry (GC-EI-MS) identified these as 4-hydroxybenzoic acid (1, 0.1 mg), 3,4-dihydroxybenzoic acid (2, 0.3 mg), 4-(2-hydroxyethyl)-phenol (3, 0.6 mg; tyrosol), pyrocatechol (4, 0.3 mg), 3,4,5-trihydroxybenzoic acid ethyl ester (5, 0.6 mg; ethyl gallate). The presence of 1 and 2 in Korean black raspberry has previously been reported. However, the presence of 3-5 in Korean black raspberry, and the identification of 1-5 from the Korean black raspberry wine have never before been reported.

Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848

  • Liu, Chun-Ying;Zhou, Rui-Xin;Sun, Chang-Kai;Jin, Ying-Hua;Yu, Hong-Shan;Zhang, Tian-Yang;Xu, Long-Quan;Jin, Feng-Xie
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.221-229
    • /
    • 2015
  • Background: Minor ginsenosides, those having low content in ginseng, have higher pharmacological activities. To obtain minor ginsenosides, the biotransformation of American ginseng protopanaxadiol (PPD)-ginsenoside was studied using special ginsenosidase type-I from Aspergillus niger g.848. Methods: DEAE (diethylaminoethyl)-cellulose and polyacrylamide gel electrophoresis were used in enzyme purification, thin-layer chromatography and high performance liquid chromatography (HPLC) were used in enzyme hydrolysis and kinetics; crude enzyme was used in minor ginsenoside preparation from PPD-ginsenoside; the products were separated with silica-gel-column, and recognized by HPLC and NMR (Nuclear Magnetic Resonance). Results: The enzyme molecular weight was 75 kDa; the enzyme firstly hydrolyzed the C-20 position 20-O-${\beta}$-D-Glc of ginsenoside Rb1, then the C-3 position 3-O-${\beta}$-D-Glc with the pathway $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}C-K$. However, the enzyme firstly hydrolyzed C-3 position 3-O-${\beta}$-D-Glc of ginsenoside Rb2 and Rc, finally hydrolyzed 20-O-L-Ara with the pathway $Rb2{\rightarrow}C-O{\rightarrow}C-Y{\rightarrow}C-K$, and $Rc{\rightarrow}C-Mc1{\rightarrow}C-Mc{\rightarrow}C-K$. According to enzyme kinetics, $K_m$ and $V_{max}$ of Michaelis-Menten equation, the enzyme reaction velocities on ginsenosides were Rb1 > Rb2 > Rc > Rd. However, the pure enzyme yield was only 3.1%, so crude enzyme was used for minor ginsenoside preparation. When the crude enzyme was reacted in 3% American ginseng PPD-ginsenoside (containing Rb1, Rb2, Rc, and Rd) at $45^{\circ}C$ and pH 5.0 for 18 h, the main products were minor ginsenosides C-Mc, C-Y, F2, and C-K; average molar yields were 43.7% for C-Mc from Rc, 42.4% for C-Y from Rb2, and 69.5% for F2 and C-K from Rb1 and Rd. Conclusion: Four monomer minor ginsenosides were successfully produced (at low-cost) from the PPD-ginsenosides using crude enzyme.