• Title/Summary/Keyword: $^{68}Ga$-DOTATOC

Search Result 4, Processing Time 0.018 seconds

Evaluation of Standardized Uptake Value applying Prompt Gamma Correction on 68Ga-DOTATOC PET/CT Image (68Ga-DOTATOC PET/CT에서 Prompt Gamma Correction을 적용한 SUV의 평가)

  • Yoon, Seok Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • $^{68}Ga$ was eluted from a $^{68}Ge/^{68}Ga$ radionuclide generator. $^{68}Ga$ decays into $^{68}Zn$, with a half life=67.8min. The decay is 88.9 % by ${\beta}$+ and 11.1 % by EC. The main ${\beta}$+ decay (87.7 %) is to the ground level of $^{68}Zn$ and it is a pure positron emission branch. A small fraction decays ${\beta}$+ (1.2 %) into an excited level of $^{68}Zn$, which promptly decays into the ground level with a ${\gamma}$ (1.077 Mev). This can constitute prompt gamma contamination in the PET data, if the 1.077 Mev ${\gamma}$ has a scatter interaction in the patient, and generates a lower energy ${\gamma}$ in coincidence with the positron annihilation pair. The purpose of this study was to evaluate standardized uptake value(SUV) before and after applying prompt gamma rays correction on $^{68}Ga$-DOTATOC PET/CT image. Fifty patient underwent PET/CT 1 hour after injection of the $^{68}Ga$-DOTATOC. The SUVmax and SUVmean of lesions and normal tissues (Pituitary, Lung, Liver, Spleen, Kidney, Intestine) were evaluated before and after applying prompt gamma correction on $^{68}Ga$-DOTATOC PET/CT image. Additionally, the SUVmax of each lesions and SUVmean of the soft tissues were measured on images. and target to background ratios (TBR) were calculated as quantitative indices. Among 15 patients, 25 of lesions (Pancreas, Liver, Thoracic Spine, Brain) with increased uptake on $^{68}Ga$-DOTATOC PET/CT image. SUVmax and SUVmean were increased in lesion site and normal tissue after prompt gamma rays correction. TBR was $51.51{\pm}49.28$ and $55.50{\pm}53.12$ before and after prompt gamma rays correction, respectively. (p<0.0001)

Development of an Automated Synthesizer for the Routine Production of Ga-68 Radiopharmaceuticals (임상용 Ga-68 표지 방사성의약품의 합성을 위한 자동합성장치 개발)

  • Jun Young PARK;Jeongmin SON;Won Jun KANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.253-260
    • /
    • 2023
  • The germanium-68/gallium-68 (68Ge/68Ga) generator has high spatial utilization and requires little maintenance, making it economical and easy to produce. Thus, the frequency of use of 68Ga radiopharmaceuticals is rapidly increasing worldwide. Therefore, this study attempted to develop an automated synthesizer for the routine clinical application of 68Ga radiopharmaceuticals. The automated synthesizer was based on a fixed tubing system and the structure was designed after adjusting the position of the parts to reflect the synthesis method. Using various components that can be supplied in Korea, the automated synthesizer was manufactured at a much lower price cost than that of a commercialized automated synthesizer sold by companies. 68Ga-DOTA-[Tyr3]-octreotide (68Ga-DOTATOC) was synthesized to evaluate the performance of the automated synthesizer. 68Ga-DOTATOC could be synthesized with about 65% of non-decay corrected yield, and the synthesized 68Ga-DOTATOC met all quality control standards. We have synthesized 68Ga-DOTATOC more than 100 times, and only faced a few problems caused by mechanical errors. In this study, we successfully developed a simple automated synthesizer for 68Ga radiopharmaceuticals with high reproducibility. As various 68Ga radiopharmaceuticals have recently been developed, it is expected that the automated synthesizer developed in this study will be useful for routine clinical use.

Evaluation of the Effects of Interfering Factors on the Bacterial Endotoxin Testing of Radiopharmaceuticals (방사성의약품의 박테리아 엔도톡신 시험에서 반응간섭인자들의 영향에 대한 평가)

  • Jun Young PARK
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.56 no.2
    • /
    • pp.171-180
    • /
    • 2024
  • The endotoxin test is based on the reaction between Limulus Amebocyte Lysate (LAL) and the lipopolysaccharides of Gram-negative bacteria. In this study, we sought to identify factors that interfere with the LAL testing of radiopharmaceuticals and evaluated acceptable ranges. A gel-clot LAL test and a chromogenic LAL test were used as endotoxin tests. We compared the performances of the Endosafe LAL and recombinant Endosafe Recombinant Cascade Reagent (rCR) cartridges for the chromogenic test. The factors that interfered with 68Ga-DOTATOC injection were pH, 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES) buffer, and organic solvents, especially ethanol. However, interference by these factors was overcome by diluting the 68Ga-DOTATOC injection tenfold. In addition, no interference was observed at pH values between 4 and 8, at a HEPES concentration of 2,000 ㎍/mL, or an ethanol concentration of <1%. Furthermore, results showed that interfering factors had similar effects on the performances of the Endosafe LAL and Endosafe rCR cartridges. The results of this study are expected to be useful for evaluating factors that interfere with the endotoxin testing of new radiopharmaceuticals.

Fully automated radiosynthesis of [68Ga]edotreotide ([68Ga]DOTA-TOC) and its quality controls

  • Park, Hyun Sik;Lee, Hong Jin;An, Hyun Ho;Moon, Byung Seok;Lee, Byung Chul;Lee, Won Woo;Kim, Sang Eun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.85-90
    • /
    • 2017
  • $^{68}Ga-PET$ is of growing importance in the practice of nuclear medicine diagnostic imaging for neuroendocrine tumors as well as prostate cancers. Following this interests, we herein present the radiosynthesis process of [$^{68}Ga$]edotreotide ([$^{68}Ga$]DOTA-TOC) based on the fully automated procedure for clinical doses that can be provided the reduction of radiation exposure and high reproducibility. The quality controls of clinical doses in compliant with European Pharmacopoeia are also discussed.