• Title/Summary/Keyword: $^{55}Mn$

Search Result 336, Processing Time 0.036 seconds

Sequence analysis of ORF4 gene of porcine reproductive and respiratory syndrome virus (PRRSV) Korean isolate CNV-1

  • Park, Jee-yong;Lim, Bae-keun;Kim, Hyun-soo
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.2
    • /
    • pp.294-300
    • /
    • 1999
  • In this study PRRSV was isolated from serum of an infected pig and designated as CNV-1, ORF4 gene was sequenced, and the nucleotide sequence, deduced amino acid sequence and the amino acid sequence of the neutralizing domain was compared with other PRRSV Strains. ORF4 gene of the Korean isolate PRRSV CNV-1 was shown to be 537bp in length, which is the same as US strain ISU55 but 21bp longer than another US strain MN1b, and 15bp shorter than European strain LV. The homologies of the nucleotide sequences between the Korean isolate CNV-1 and the US strains ISU55, MN1b and European strain LV were 91.8%, 88.1%, 67.6%, respectively, and the homologies of the deduced amino acid sequences were 94.4%, 84.4%, 68.5%, respectively. The neutralizing domain of the CNV-1 was shown to be 36 amino acids in length which is the same as ISU55, MN1b, but 4 amino acids shorter than that of the neutralizing domain reported in LV. The homologies of the amino acid sequences of the neutralizing domain between the Korean isolate CNV-1 and the US strains ISU55, MN1b and European strain LV were 92.5%, 85%, 57.5%, respectively. The molecular characteristics of ORF4 gene of the Korean isolate PRRSV CNV-1 shown in this study suggests that the CNV-1 is genetically closer to the US strains. Also the wide variation of the neutralizing domain between the CNV-1 and LV suggests that there is substantial immunogenic variation between the two strains.

  • PDF

A Study on the Content of Trace Constituents in Dried Milk Powder (粉乳의 微量 營養成分에 관한 연구)

  • Kim, Dae-Seon;Ha, Man-Kwang;Lee, Won-Chang
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.1
    • /
    • pp.67-71
    • /
    • 1987
  • This study was intended to investigate the content of Cu, Mn, Zn in the dried milk powders except infant formula milkpowder from January to March, 1986. The content of the trace metals was determined by Atomic Absorption Spectrophotometry. The results were as follows: 1. Averages of Cu, Mn, Zn in the total samples were Cu, 0.3043 ppm Mn, 0.5101 ppm Zn, 26.006 ppm. 2. Averages and ranges of Cu, Mn, Zu in the whole milk powder were Cu, 0.2483, 0.216 - 0.48 Mn, 0.552 ppm, 0.336 - 0.732 ppm Zn, 28.961 ppm, 7.5 - 51.9 ppm. 3. Averages and ranges of Cu, Mn, Zn in the skim milk powder were Cu, 0.4095 ppm, 0.3 - 0.54 ppm Mn, 0.6907 ppm, 0.348 - 0.84 ppm Zn, 38.381 ppm, 30.6 - 55.2 ppm. 4. Averages and ranges of Cu, Mn, Zn in the modified milk powder were Cu, 0.3459 ppm, 0.12 0.948 ppm Mn, 0.2414 ppm, 0.096 - 0.348 ppm Zn, 7.752 ppm, 1.2 - 17.002 ppm. 5. It showed the highest amount of Cu, Mn, Zu in the skim milk powder group than in the other group and the lowest amount of Cu in the whole milk powder group and Mn, Zn in the modified milk group.

  • PDF

Effect of Fe, Mn Content on the Castability of Al-4%Mg-0.9%Si Alloys for High Pressure Die Casting (고압 금형 주조용 Al-4%Mg-0.9%Si 합금의 주조특성에 미치는 Fe, Mn 함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-4wt%Mg-0.9wt%Si system alloy has been studied. According to the analysis of cooling curve for Al-4wt%Mg-0.9wt%Si-0.3wt%Fe-0.3/0.5wt%Mn alloy, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}-Al_5FeSi$ phases crystallized above eutectic temperature of $Mg_2Si$. Therefore, these phases affected both the fluidity and shrinkage behaviors of the alloy during solidification. As Fe and Mn contents of Al-4wt%Mg-0.9wt%Si system alloy increased from 0.1 wt% to 0.4 wt% and from 0.3 wt% to 0.5 wt% respectively, the fluidity of the alloy decreased by 26% and 33%. When Fe content of the alloy increased from 0.1 wt% to 0.4 wt%, 23% decrease of macro shrinkage and 19% increase of micro shrinkage appeared. Similarly, Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, 11% decrease of macro shrinkage and 14% increase of micro shrinkage appeared. Judging from the castability of the alloy, Al-4wt%Mg-0.9wt%Si alloy with low content of Fe and Mn, 0.1 wt% Fe and 0.3 wt% Mn, is recommendable.

Cathode Characteristics of Co3(PO4)2-Coated [Co0.1Ni0.15Li0.2Mn0.55]O2 for Lithium Rechargeable Batteries (Co3(PO4)2로 표면코팅한 Li[Co0.1Ni0.15Li0.2Mn0.55]O2의 리튬 2차전지용 양극재 특성 )

  • Lee, Sang-Hyo;Kim, Kwang-Man;Koo, Bon-Keup
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.112-118
    • /
    • 2008
  • To prepare the high-capacity cathode material with improved electrochemical performances, nanoparticles of $C0_3(PO_4)_2$ were coated on the powder surface of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$, which was already synthesized by simple combustion method. The coated powders after the heat treatment at >$700^{\circ}C$ surely showed well-structured crystalline property with nanoscale surface coating layer, which was consisted of $LiCOPO_4$ phase formed from the reaction bwtween $CO_3(PO_4)_2$ and lithium impurities. In addition, cycle performance was particularly improved by the $CO_3(PO_4)_2$-coating for the cathode material for lithium rechargeable batteries.

Electron Spin Resonance Study of Manganese Ion Species Incorporated into Novel Aluminosilicate Nanospheres with Solid Core/Mesoporous Shell Structure

  • Back, Gern-Ho;Kim, Ki-Yub;Kim, Yun-Kyung;Yu, Jong-Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.55-75
    • /
    • 2010
  • An ion-exchanged reaction of $MnCl_2$ with Al-incorporated solid core/mesoporous shell silica (AlSCMS) followed by calcinations generated manganese species, where average oxidation state of manganese ion is 3+, in the mesoporous materials. Dehydration results in the formation of $Mn^{2+}$ ion species, which can be characterized by electron spin resonance (ESR). The chemical environments of the manganese centers in Mn-AlSCMS were investigated by diffuse reflectance, UV-VIS and ESR spectroscopic methods. Upon drying at 323 K, part of manganese is oxidized to higher oxidation state ($Mn^{3+}$ and $Mn^{4+}$) and further increase in (average) oxidation state takes place upon calcinations at 823 K. It was found that the manganese species on the wall of the Mn-AlSCMS were transformed to tetrahedral $Mn^{3+}$ or $Mn^{4+}$ and further changed to square pyramid by additional coordination to water molecules upon hydration. The oxidized $Mn^{3+}$ or $Mn^{4+}$ species on the surfaces were reversibly reduced to $Mn^{2+}$ or $Mn^{3+}$ species or lower valances by thermal process. Mn(II) species I with a well resolved sextet was observed in calcined, hydrated Mn-AlSCMS, while Mn (II) species II with g = 5.1 and 3.2 observed in dehydrated Mn-AlSCMS. Both species I and II are considered to be non-framework Mn(II).

Investigation on the Structural, Electrical and Magnetic Properties of Layered Perovskite Manganite La0.5Sr1.5Mn0.5Cr0.5-xFexO4 (x=0.15, 0.3) System (층상 페로브스카이트 구조인 La0.5Sr1.5Mn0.5Cr0.5-xFexO4 (x=0.15, 0.3) 망가나이트의 구조적, 전기적, 자기적 특성의 연구)

  • Singh, Devinder
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.697-702
    • /
    • 2011
  • The new layered perovskite manganites $La_{0.5}Sr_{1.5}Mn_{0.5}Cr_{0.5-x}Fe_xO_4$ (x=0.15, 0.3) have been prepared by standard ceramic method. The powder X-ray diffraction studies show that the phases crystallize with tetragonal unit cell in the space group I4/mmm. The electrical transport properties suggest that the phases show insulating behaviour and the electrical conduction in the phases occurs by a 3D variable range hopping mechanism. The magnetic properties suggest that both the phases are antiferromagnetic.

Electrical properties of $MnO_2$doped PSN-PNN-PT ceramics ($MnO_2$가 첨가된 PSN-PNN-PT세라믹스의 전기적인 특성)

  • 이종덕;박상만;박기엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.959-962
    • /
    • 2001
  • In this study, the piezoelectric and dielectric properties and Temperature stability of resonant frequency with MnO$_2$doped 0.36Pb(Sc$_{1}$2/Nb$_{1}$2/)O$_3$- 0.25Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$-0.39PbTiO$_3$(hereafter PSNNT) were investigated. The tetagonality of crystal structure was developed with increasing MnO$_2$additive content. With increasing MnO$_2$additive content, the electromechanical coupling factor and quality factor were increased. Electromechanical coupling k$_{p}$ and quality factor Q$_{m}$ at MnO$_2$doped with 2.0mol% were showed highest value of 55.6% and 252. In the case of specimen for MnO$_2$doped with 2mol%, temperature dependance of resonant frequency had a good properties.ies.

  • PDF

Influences of Electrodeposition Variables on Mechanical Properties of Ni-Mn Electrodepositions (Ni-Mn 전착층의 기계적 성질에 미치는 공정조건의 영향)

  • Shin, Ji-Wung;Yang, Seung-Gi;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.102-106
    • /
    • 2014
  • Nickel electrodeposition from sulfamate bath has several benefits such as low internal stress, high current density and good ductility. In nickel deposited layers, sulfur induces high temperature embrittlement, as Ni-S compound has a low melting temperature. To overcome high temperature embrittlement problem, adding manganese is one of the good methods. Manganese makes Mn-S compound having a high melting temperature above $1500^{\circ}C$. In this work, the mechanical properties of Ni-Mn deposited layers were investigated by using various process variables such as concentration of Mn$(NH_2SO_3)_2$, current density, and bath temperature. As the Mn content of electrodeposited layers was increased, internal stress and hardness were increased. By increasing current density, internal stress increased, but hardness decreased. With increasing the bath temperature from 55 to $70^{\circ}C$, internal stress of Ni deposit layers decreased, but hardness didn't change by bath temperature. It was likely that eutectoid manganese led to lattice deformation, and the lattice deformation increased hardness and internal stress in Ni-Mn layers. Increasing current density and decreasing bath temperature would increase a mount of $H_2$ absorption, which was a cause for the rise of internal stress.