• Title/Summary/Keyword: $^{234}Th$

Search Result 131, Processing Time 0.019 seconds

$^{230}$ Th/$^{234}$ U disequilibrium dating of fracture-filling carbonate veins from the Ipsil and Janghangri fault zones, Gyeongju, Korea by multiple collector inductively coupled plasma mass spectrometry (다검출기 유도결합 플라즈마 질량분석기를 이용한 경주 입실, 장항리 단층 파쇄대 충진 탄산염암 맥의 $^{230}Th/^{234}U$ 비평형 연대측정)

  • 정창식;최만식;김현철;임상복
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.148-156
    • /
    • 2001
  • We report $^{230}Th/^{234}U$ disequilibrium ages of fracture-filling carbonate veins from the Ipsil and Janghangri fault zones, Gyeongju, Korea by multiple collector inductively coupled plasma mass spectrometry. The U and Th fraction was extracted from totally dissolved samples by rapid and convenient coprecipitation and ion exchange chemistry. The recovery was around 80% for Th and 70% for U. The $^{234}U/^{238}U,\;^{230}Th/^{232}Th$ ratios were analysed for this preconcentrated fraction and the U/Th ratio was directly analysed for untreated sample solution. The $^{234}U-^{230}Th$ system is in secular equilibrium for the Ipsil carbonate samples, supporting previously reported ESR ages. The detrital-corrected $^{230}Th/^{234}U$ age of the Janghangri carbonate samples is $48\pm$41 ka, which constrains the minimum age of the fracture zone.

  • PDF

The Vertical Fluxes of Particles and Radionuclides in the East Sea

  • Moon, Deok-Soo;Kim, Kee-Hyun;Noh, Il
    • Journal of the korean society of oceanography
    • /
    • v.35 no.1
    • /
    • pp.16-33
    • /
    • 2000
  • In order to measure the vertical fluxes of particles and reactive radionuclides such as thorium and polonium isotopes, Dunbar-type sediment traps were freely deployed at the Ulleung Basin and in warm and cold water masses around the polar front of the East Sea. We estimated the ratios of the catched (F) to the predicted $^234$Th fluxes (P) using natural tracers pair $^234$Th-$^238$U. The F/P ratios are decreased with increasing water depth. Whereas the concentrations of suspended particles are homogeneous in water column, the mass fluxes are also decreased with increasing water depth like the F/P ratios. These facts indicate that organic matters of settling particles are destructed within the euphotic layer due to decomposition. Whereas regenerations of sinking particles are negligible in the cold water mass, about 80% of them are regenerated in the warm water mass during falling of large particles. These downward mass fluxes are closely correlated with their primary productions in euphotic zone. The activities of $^234$Th, $^228$Th and $^210$Po in the sinking material were increased with water depth. Because $^234$Th steadily produced in the water column are cumulatively adsorbed on the surface of sinking particles, vertical $^234$Th fluxes were observed to increase with water depth. Therefore, these sinking particles play important roles in transporting the particle reactive elements like thorium from surface to the deep sea. The scavenging processes including adsorption and settling reactions generate radio-disequilibrium between daughter and parent nuclides in water column. The activity ratios of $^234$Th/$^238$U and $^228$Th/$^228$Ra were observed to be < 1.0 in the surface water and approached to be equilibrium below the thermocline. The extent of the deficiency of daughter nuclides compared to the parents nuclide was highly correlated with the vertical particle flux. Because most of the $^210$Po in the surface water are scavenged on a labile phase and are recycled at sub-surface depths (< 200 m), the $^210$Po are always observed to be excess activities compared to $^226$Ra in surface water.

  • PDF

Estimate of Particulate Organic Carbon Export Flux Using $^{234}Th/^{238}U$ Disequilibrium in the Southwestern East Sea During Summer (동해 서남해역에서 여름철 $^{234}Th/^{238}U$ 비평형을 이용한 입자상 유기탄소 침강플럭스 추정)

  • Kim, Dong-Seon;Choi, Man-Sik;Oh, Hae-Young;Kim, Kyung Hee;Noh, Jae-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Export fluxes of particulate organic carbon were estimated for the first time by using $^{234}Th/^{238}U$ disequilibrium in the southwestern East Sea during August 2007. They were calculated by multiplying POC/$^{234}Th_p$ ratios of sinking particles (larger than 0.7 ${\mu}m$) obtained from 150-200 m water depths to $^{234}Th$ fluxes that were estimated by integrating $^{234}Th/^{238}U$ disequilibrium from surface to 100 m water depth. Export fluxes ranged from 14 to 505 mg C $m^{-2}$ $day^{-1}$, with the highest value at station A2 and the lowest value at station D4. Primary production was well correlated with export flux, indicating that it was a major factor controlling export flux. Export flux in the East Sea was generally higher than those estimated in the open ocean and similar to or somewhat higher than those in the continental marginal seas. Export flux/primary production (EF/PP) ratios varied from 0.29 to 0.62, with an average of 0.43 and were somewhat higher in the basin area than in the coastal area. EF/PP ratio in the East Sea was rather similar to those estimated in the North Sea and Chukchi Sea, but much higher than those in the Labrador Sea, Barents Sea, and Gulf of Lions. Therefore, the East Sea is one of the major areas where a large amount of organic carbon produced in the euphotic zone sinks into the deep layer below 200 m water depth.

Analysis of 766 keV Gamma Peak from NPP Environmental Samples (원전주변 환경시료의 766 keV 감마선에너지 피크에 대한 해석)

  • Kim, Wan;Lee, Hae-Young;Yang, He-Sun;Park, Hae-Soo;Kim, Bong-Kuk;Park, Hwan-Bae;Kim, Hong-Joo;Lee, Sang-Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.4
    • /
    • pp.190-194
    • /
    • 2009
  • Gamma spectral results for macroalgae samples taken from the environment of Ulchin nuclear power plants in Korea (east coast), showed 766 keV peaks, which were identified as $^{95}Nb$ by several research institutes. After the enhancement of liquid radioactive waste disposal facility at Ulchin NPP site, the $^{95}Nb$ amount in the liquid radioactive waste outflow has drastically reduced, but the expected reduction in $^{95}Nb$ specific activity from environmental samples did not actually show up on gamma spectroscopy. Detailed re-investigation revealed that along with 766 keV peak, other peaks (63, 92 and 1001 keV) from $^{234}Th-^{234}mPa$ decay series were also detected on spectroscopy, and that the measured half lives of the four peaks were very close to known half life of $^{234}Th-^{234}mPa$ decay series, which is 24.1 day. The measured gamma yield ratios of 766 keV peak to 1001 peak were very close to known ratio 0.35 for $^{234}mPa$. It is concluded that 766 keV peaks on gamma spectroscopy of Ulchin NPP environmental samples were mainly from $^{234}mPa$, which is one of naturally occurring radionuclides.

Estimation of Sedimentation and Particle Mixing Rates in Ulleung Basin of the East Sea (Sea of Japan) Using $^7Be,{\;}^{234}Th,{\;}^{210}Pb,{\;}and{\;}^{137}Cs$

  • Kim, Kee-Hyun;Park, Nam-Joon
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.157-165
    • /
    • 2003
  • In order to understand the characteristics of sedimentary environments in Ulleung Basin of the East Sea (Sea of Japan), three sediment cores were taken with a box corer during R/V Tamyang cruise in October 1999. Activities of $^{7}Be,{\;}^{210}Pb,{\;}^{226}Ra,{\;}^{234}Th,{\;}^{238}{\;}and{\;}^{137}Cs$ in sediment samples were determined by non-destructive gamma-ray spectrometry. Rates of sedimentation and particle mixing were estimated by best fitting an advection­diffusion particle mixing model to the data of $^{7}Be,{\;}^{234}Th,{\;}and{\;}^{210}Pb$. Estimated sedimentation rates were 0.06-0.08 cm/yr and particle mixing rates were $0.13-0.65{\;}\textrm{cm}^2/yr$. The use of multiple tracers in our study prevented us from probable up to 38% overestimation of sedimentation rates.

Removal of $^{210}Po$ and $^{234}Th$ from Seawater at the East-southern Coastal Region of Korea Peninsula in Spring (춘계 한국 동해남부 연안해역에서 해수중 $^{210}Po$$^{234}Th$의 제거)

  • LEE Haeng-Pil;YANG Han-Soeb;KIM Kee-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.332-344
    • /
    • 1996
  • The vertical profiles of the natural $^{210}Po,\;^{210}Pb\;and\;^{234}Th$, activities were measured at the upper 150 m or 200 m of water column from west-east intersection in the east-southern coastal area of the Korea Peninsula during the period from 26 to 29 April 1994 to compare the removal rates (residence time) and removal processes for $^{210}Po\;and\;^{234}Th$. At the inshore stations, the $^{210}Po$ activity was generally higher in the thermocline and its under layer than in the surface mixed layer, while represented the reversed pattern at the offshore stations. However, the $^{210}Pb$ activity decreased generally with depth. Also, the activity of $^{210}Po$ relative to its parent $^{210}Pb$ was deficient in the water column above the main thermocline, but was slightly excess or close to equilibrium in the thermocline and its under layer. The vertical profiles for the activity of $^{210}Pb$ relative to its parent $^{226}Ra$ showed the reversed pattern with the vertical variation of $^{210}Po$ excess (or deficiency). The $^{234}Th$ activity was significantly lower in the surface mixed layer and thermocline than in the deeper layer. The residence time of $^{210}Po$ ranged from 1 to 4 years at the five stations except station E8 that showed yet long residence time (approximately 10 years). The long residence time at the station E8 may resulted from the thicker surface mixed layer and subsequent the vertical mixing of $^{210}Po$ which was recycled in the lower surface mixed layer compared to at the other stations. Also, the residence time of $^{210}Po$ was shorter at the inshore stations than at the offshore stations. However, the residence time of $^{234}Th$ ranged from 52 to 74 days at all station without the significant variation, was very much shorter relative to the residence time of $^{210}Po$. The correlation between the removal rate of dissolved $^{234}Th$ and the concentration of total suspended matter (TSM) was generally positive. Therefore, it seems that the major route of the removal mechanism of $^{234}Th$ from seawater in the surface mixed layer is via adsorption onto suspended particle surfaces (most likely inorganic particles) and subsequent settling to the bottom layer. Between the removal rate of dissolved $^{210}Po$ and the concentration of chlorophyll-a was positively good correlation. Consequently, most likely the removal of $^{210}Po$ may be occurred by uptake to organisms (mainly such as planktonic debris or fecal pellets) and subsequent settling.

  • PDF

Effect of Eddy on the Cycle of 210Po and 234 in the central Region of Korean East Sea (동해 중부해역에서 210Po과 234Th의 순환에 대한 소용돌이의 영향)

  • YANG, HAN SOEB;KIM, SOUNG SOO;LEE, JAE CHUL
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.279-287
    • /
    • 1995
  • The vertical profiles of natural 210Pb, 210Po and 234Th activities were measured for the upper 100 m of water column at three stations in the middle region of the Korean East Sea during May 1992. And the distribution of these radionuclides was discussed associated with the formation of warm eddy or water mass. The main thermocline was maintained between the depth of 50 and 100 m at the southern station (Sta. A1), and between the depth of 10 to 50 m at the coastal station of Sockcho (Sta. B10). Contrastingly, a main thermocline at Sta. A10, which locates near the center of warm eddy, was observed below 230 m depth. Between 50 and 220 m depth of Sta. A10 is there a relatively homogeneous water mass of 10.1${\pm}$0.5$^{\circ}C$, which is significantly higher in temperature and lower in nutrient than the other two stations. It seems to be due to sinking of the warm surface water in which nutrients were completely consumed. Both 210Pb and 210Po show the highest concentration at Sta. A1 and the lowest at Sta. B10 among the three stations. Also, the 210Pb activity is generally higher in the upper layer than in the lower layer, while 210Po activity represents the reversed pattern at all three stations. At Sta. A1 and Sta. B10, the activities of 210Po relative to its parent 210Pb were deficient in the water column above the main thermocline, but were excess below the thermocline. However, the station near the center of warm eddy(Sta. A10), shows no excess of 210Po in the depths below 50 m, although its defficiency is found in the upper layer like the other stations. At Sta. A1 and b10. 234Th activities are slightly lower in the surface mixed layer than in the deeper region However, at Sta. A10, 234Th activity in the upper 30 m is higher than below 50 m or in the same depth of the other stations, probably because of the high concentration of particulate matter. The residence time of 210Po in the surface mixed layer at Sta. A10 is 0.4 year, much shorter than at the other two stations(about one year). Above 100 m depth, the residence times of 234Th range from 18 to 30 other two stations(about on year). Above 100 m depth, the residence times of 234Th range from 18 to 30 days at all stations, without significant regional variation. The percentages of recycled 210Po within the thermocline are 39% and 92% at Sta. A1 and Sta. B10, respectively. Much higher value at Sta. B10 may be due to a thin thickness of the mixed layer as well as the slower recycling rate of 210Po in the main thermocline.

  • PDF

Analysis of Radioactivity in Coal Fly Ash (비산석탄회의 방사능 농도 분석)

  • Shin, Hyun-Sang;Lee, Myung-Ho;Kim, Mi-Kyung;Park, Doo-Wun;Lee, Chang-Woo;Rhee, Dong-Seok
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.187-193
    • /
    • 1999
  • The specific radioactivity concentrations in the coal fly ash obtained from heat producing stations in Korea were analyzed and its radiological hazard for reuse in construction purpose was evaluated. The concentrations of uranium isotopes in the real fly ash measured by TBP solvent extraction method and $\alpha$-spectrometer were found to be about 116.1 Bq $kg^{-1}$ for $^{238}U$, 5.01 Bq $kg^{-1}$ for $^{235}U$, and 121.2 Bq $kg^{-1}$ for $^{234}U$, respectively. The activity ratio of $^{234}U/^{238}U$, in the coal fly ash was in $1.04\;{\pm}\;0.03$, which is similar to that of uncontaminated Korean soil in natural conditions (1.14). The specific radioactivities of $^{226}Ra,\;^{232}Th,\;and\;^{40}K$ in the coal fly ash were also determined using $\gamma$-spectrometer with a HPGe detector The results showed that $^{226}Ra,\;^{232}Th,\;and\;^{40}K$ in the coal fly ash were in concentrations of $101.7{\sim}113.9$, $39.5{\sim}54.2\;and\;315.0{\sim}990.6$ Bq $kg^{-1}$, respectively. With the specific radioactivities obtained from $\gamma$-spectrometric measurements of the coal fly ash, its radiological hazard for reuse was evaluated. The result showed that the radioactivity of the coal fly ash was in permissible level.

  • PDF

Analytical Solutions for a Three-Member Decay Chain of Radionuclides Transport in a Single Fractured Porous Rock (단일균열 다공성암반에서 방사성핵종의 수송에 대한 3단계 붕괴사슬의 해석해)

  • Yu, Young-Woo;Chung, Chang-Hyun;Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.453-460
    • /
    • 1994
  • The migration equation is modified for a three-member decay chain in the fracture and porous matrix Analytical solutions are obtained by utilizing Laplace transform the initial conditions of Delta function and Bateman equation. The concentrations for each nuclide of Np$^{237}$ -U$^{233}$ -Th$^{229}$ and U$^{234}$ -Th$^{230}$ -Ra$^{226}$ chains selected from the 4n+1 and 4n+2 chains are plotted by utilizing analytical solutions in the fracture. Retardation coefficient of the nuclides are obtained using those of the granite. The results indicate that the daughter nuclides such as U$^{233}$ , Th$^{229}$ , Th$^{230}$ and Ra$^{226}$ become important at the far field from the repository though there is very small initial inventory in the waste solid or spent fuel, for they are produced by the mother nuclides decayed in the fracture and porous matrix.

  • PDF

Study on the behavior of radionuclides in geologic samples from fault zone, Gabal Um Hamd, southwestern Sinai, Egypt

  • Doaa M. El Afandy;Eman M. Ibrahim;Ibrahim E. El Aassy;H.A. Abdel Ghany
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3785-3795
    • /
    • 2024
  • The present study concerned with the activity concentrations of natural radionuclides (238U, 234U, 230Th, 226Ra, 232Th, 40K and, 235U) in ten sedimentary rock samples collected from fault zone, Gabal Um Hamd, southwestern Sinai, Egypt. These samples were investigated to study their behavior during a part of geologic time. The activity concentrations were measured using γ-ray spectrometry (HPGe detector). The investigated samples were analyzed for major oxides using the XRF technique. The results demonstrated high average activity concentrations of 238U, 234U, 230Th, 226Ra, 232Th, 40K and, 235U than the worldwide average values as reported by UNSCEAR 2008. Theil diagram showed that there are accumulation and leaching of uranium in some samples in the two sides of the fault zone. It is noticed that the ages of uranium depositions for the samples collected from the downthrown of the fault zone vary from 121.5 to 440.1 ky, while for the sample collected from the upthrown of the fault is 210.9 ky. The 230Th/232Th activity ratios range between 4.55 and 91.04 for downthrown samples and between 4.75 and 6.05 for upthrown samples which are smaller than 20 except for two samples, indicating a contamination of the samples by detrital 230Th. After subtraction of the detrital 230Th, the corrected ages for downthrown samples vary from 119.1 to 231.7 ky while for upthrown samples vary from 164.4 to 390 ky.