• Title/Summary/Keyword: $\theta$-derivation

Search Result 14, Processing Time 0.024 seconds

REGULARITY OF GENERALIZED DERIVATIONS IN BCI-ALGEBRAS

  • Muhiuddin, G.
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.229-235
    • /
    • 2016
  • In this paper we study the regularity of inside (or outside) (${\theta},{\phi}$)-derivations in BCI-algebras X and prove that let $d_{({\theta},{\phi})}:X{\rightarrow}X$ be an inside (${\theta},{\phi}$)-derivation of X. If there exists a ${\alpha}{\in}X$ such that $d_{({\theta},{\phi})}(x){\ast}{\theta}(a)=0$, then $d_{({\theta},{\phi})}$ is regular for all $x{\in}X$. It is also shown that if X is a BCK-algebra, then every inside (or outside) (${\theta},{\phi}$)-derivation of X is regular. Furthermore the concepts of ${\theta}$-ideal, ${\phi}$-ideal and invariant inside (or outside) (${\theta},{\phi}$)-derivations of X are introduced and their related properties are investigated. Finally we obtain the following result: If $d_{({\theta},{\phi})}:X{\rightarrow}X$ is an outside (${\theta},{\phi}$)-derivation of X, then $d_{({\theta},{\phi})}$ is regular if and only if every ${\theta}$-ideal of X is $d_{({\theta},{\phi})}$-invariant.

On The Derivation of a Certain Noncentral t Distribution

  • Gupta, A.K.;Kabe, D.G.
    • Journal of the Korean Statistical Society
    • /
    • v.19 no.2
    • /
    • pp.182-185
    • /
    • 1990
  • Let a p-component vector y have a p-variate normal distribution $N(b\theta, \Sigma), \Sigma$ unknown, b specified, then for testing $\theta = 0$ against general $\theta$, Khatri and Rao (1987) derive a certain t test and obtain its power function. This paper presents a direct derivation of this power function in terms of the original variates unlike Khatri and Rao (1987) who resort to the canonical transformations of the original variates and the conditional distributions.

  • PDF

SOME RESULTS CONCERNING ($\theta,\;\varphi$)-DERIVATIONS ON PRIME RINGS

  • Park, Kyoo-Hong;Jung Yong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.207-215
    • /
    • 2003
  • Let R be a prime ring with characteristic different from two and let $\theta,\varphi,\sigma,\tau$ be the automorphisms of R. Let d : $R{\rightarrow}R$ be a nonzero ($\theta,\varphi$)-derivation. We prove the following results: (i) if $a{\in}R$ and [d(R), a]$_{{\theta}o{\sigma},{\varphi}o{\tau}}$=0, then $\sigma(a)\;+\;\tau(a)\;\in\;Z$, the center of R, (ii) if $d([R,a]_{\sigma,\;\tau)\;=\;0,\;then\;\sigma(a)\;+\;\tau(a)\;\in\;Z$, (iii) if $[ad(x),\;x]_{\sigma,\;\tau}\;=\;0;for\;all\;x\;\in\;RE$, then a = 0 or R is commutative.

  • PDF

LINEAR 𝜃-DERIVATIONS ON JB*-TRIPLES

  • Bak, Chunkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.27-36
    • /
    • 2006
  • In [1], the concept of generalized (${\theta}$, ${\phi}$)-derivations on rings was introduced. We introduce the concept of linear ${\theta}$-derivations on $JB^*$-triples, and prove the Cauchy-Rassias stability of linear ${\theta}$-derivations on $JB^*$-triples.

  • PDF

GENERALIZED (𝜃, 𝜙)-DERIVATIONS ON POISSON BANACH ALGEBRAS AND JORDAN BANACH ALGEBRAS

  • Park, Chun-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.18 no.2
    • /
    • pp.175-193
    • /
    • 2005
  • In [1], the concept of generalized (${\theta}$, ${\phi}$)-derivations on rings was introduced. In this paper, we introduce the concept of generalized (${\theta}$, ${\phi}$)-derivations on Poisson Banach algebras and of generalizd (${\theta}$, ${\phi}$)-derivations on Jordan Banach algebras, and prove the Cauchy-Rassias stability of generalized (${\theta}$, ${\phi}$)-derivations on Poisson Banach algebras and of generalized (${\theta}$, ${\phi}$)-derivations on Jordan Banach algebras.

  • PDF

On Bayes' uniform prior (베이즈의 균일분포에 관한 소고)

  • 허명회
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.2
    • /
    • pp.263-268
    • /
    • 1994
  • Thomas Bayes assumed uniform prior for the location $\theta$ of a billiard ball W in his historic 1764 paper. In this study, following mathematical derivation of the uniform distribution from several assumptions that are plausible on te billiard table, it is argued that the probabilistic meaning of Bayes' uniform prior (especially in Billiard Problem) is not just sujective but logical.

  • PDF

$\Theta$-DERIVATIONS ON PRIME RINGS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.313-321
    • /
    • 2003
  • In this Paper we show the following: Let R be a prime ring (with characteristic different two) and a $\in$ R. Let Θ, $\phi$ : R longrightarrow R be automorphisms and let d : R longrightarrow R be a nonzero Θ-derivation. (i) if[d($\chi$), a]Θo$\phi$ = 0 (or d([$\chi$, a]$\phi$ = 0) for all $\chi$ $\in$ R, then a+$\phi$(a) $\in$ Z, the conte. of R, (ii) if〈d($\chi$), a〉 = 0 for all $\chi$$\in$R, then d(a) =0. (iii) if [ad($\chi$), $\chi$$\phi$= 0 for all $\chi$$\in$R, then either a = 0 or R is commutative.