• Title/Summary/Keyword: $\small{L}$-Lysine fermentation

Search Result 3, Processing Time 0.063 seconds

An Overlooked Effect of Glycine Betaine on Fermentation: Prevents Caramelization and Increases the $\small{L}$-Lysine Production

  • Xu, Jianzhong;Xia, Xiuhua;Zhang, Junlan;Guo, Yanfeng;Zhang, Weiguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1368-1376
    • /
    • 2014
  • This article focuses on the effects of glycine betaine on preventing caramelization, and increasing DCW and $\small{L}$-lysine production. The additional glycine betaine not only decreased the browning intensity (decreased 4 times), and the concentrations of 5-hydroxymethylfurfural (decreased 7.8 times) and furfural (decreased 12 times), but also increased the availability of glucose (increased 17.5%) for $\small{L}$-lysine production. The DCW and $\small{L}$-lysine production were increased by adding no more than 20 mM glycine betaine, whereas the DCW and $\small{L}$-lysine production were decreased with the reduction of pH values, although pH had a better response to prevent caramelization than did glycine betaine. For $\small{L}$-lysine production, the highest increase (40%) was observed on the media with 20 mM glycine betaine. The crucial enzymes in glycolysis and $\small{L}$-lysine biosynthesis pathway were investigated. The results indicated that additional glycine betaine increases the activity of enzymes in glycolysis, in contrast to the effect of pH. All the results indicated that glycine betaine can be used to prevent caramelization and increase the $\small{L}$-lysine production. By applying this strategy, glucose would not be have to be separated from the culture media during autoclaving so that factories can save production costs and shorten the fermentation period.

Effects of Soybean Small Peptides on Rumen Fermentation and on Intestinal and Total Tract Digestion of Luxi Yellow Cattle

  • Wang, W.J.;Yang, W.R.;Wang, Y.;Song, E.L.;Liu, X.M.;Wan, F.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.1
    • /
    • pp.72-81
    • /
    • 2013
  • Four Luxi beef cattle ($400{\pm}10$ kg) fitted with ruminal, duodenal and ileal cannulas were used in a $4{\times}4$ Latin square to assess the effects of soybean small peptide (SSP) infusion on rumen fermentation, diet digestion and flow of nutrient in the gastrointestinal tract. The ruminal infusion of SSP was 0 (control), 100, 200 and 300 g/d. Ruminal SSP infusion linearly (p<0.01) and quadratically (p<0.01) increased microbial protein synthesis and rumen ammonia-N concentration. Concentrations of total volatile fatty acid were linearly increased (p = 0.029) by infusion SSP. Rumen samples were obtained for analysis of microbial ecology by real-time PCR. Populations of rumen Butyrivibrio fibrisolvens, Streptococcus bovis, Ciliate protozoa, Ruminococcus flavefaciens, and Prevotella ruminicola were expressed as a proportion of total Rumen bacterial 16S ribosomal deoxyribonucleic acid (rDNA). Butyrivibrio fibrisolvens populations which related to total bacterial 16S rDNA were increased (p<0.05), while Streptococcus bovis populations were linearly (p = 0.049) and quadratically (p = 0.020) decreased by infusion of SSP. Apparent rumen digestibility of DM and NDF were (Q, p<0.05; L, p<0.05) increased with infusion SSP. Total tract digestion of DM, OM and NDF were linearly (p<0.01) and quadratically (p<0.01) increased by infusing SSP. The flow of total amino acids (AA), essential amino acids (EAA) and individual amino acids were linearly (p<0.01) and quadratically (p<0.01) increased with infusion SSP. The digestibility of Lysine was quadratically (p = 0.033) increased and apparent degradability of Arginine was linearly (p = 0.032) and quadratically (p = 0.042) increased with infusion SSP. The results indicated that infusion SSP could improve nutrient digestion, ruminal fermentation and AA availability.

Evaluating Nutritional Quality of Single Stage- and Two Stage-fermented Soybean Meal

  • Chen, C.C.;Shih, Y.C.;Chiou, P.W.S.;Yu, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.598-606
    • /
    • 2010
  • This study investigated the nutritional quality of soybean meal (SBM) fermented by Aspergillus ($FSBM_A$) and/or followed by Lactobacillus fermentation ($FSBM_{A+L}$). Both fermented products significantly improved protein utilization of SBM with higher trichloroacetic acid (TCA) soluble true protein content, in vitro protein digestibility and available lysine content, especially in $FSBM_{A+L}$. Moreover, $FSBM_{A+L}$ produced a huge amount of lactic acid resulting in lower pH as compared to the unfermented SBM or soybean protein concentrate (SPC) (p<0.05). $FSBM_A$ and $FSBM_{A+L}$ raised 4.14% and 9.04% of essential amino acids and 5.38% and 9.37% of non-essential amino acids content, respectively. The ${\alpha}$-galactoside linkage oligosaccharides such as raffinose and stachyose content in $FSBM_A$ and $FSBM_{A+L}$ decreased significantly. The results of soluble protein fractions and distribution showed that the ratio of small protein fractions (<16 kDa) were 42.6% and 63.5% for $FSBM_A$ and $FSBM_{A+L}$, respectively, as compared to 7.2% for SBM, where the ratio of large size fractions (>55 kDa, mainly ${\beta}$-conglycinin) decreased to 9.4%, 5.4% and increased to 38.8%, respectively. There were no significant differences in ileal protein digestibility regardless of treatment groups. SPC inclusion in the diet showed a better protein digestibility than the SBM diet. In summary, soybean meal fermented by Aspergillus, especially through the consequent Lactobacillus fermentation, could increase the nutritional value as compared with unfermented SBM and is compatible with SPC.