• Title/Summary/Keyword: $\pi-Complex$

Search Result 287, Processing Time 0.023 seconds

JOINT SPATIAL NUMERICAL RANGES OF OPERATORS ON BANACH SPACES

  • Yang, Youngoh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.119-126
    • /
    • 1989
  • Throughout this paper, X will always denote a Banach space over the complex numbers C, and L(X) will denote the Banach algebra of all continuous linear operators on X. Operator will always mean continuous linear operator. An n-tuple of operators T$_{1}$,..,T$_{n}$ on X will be denoted by over ^ T=(T$_{1}$,..,T$_{n}$ ). Let L$^{n}$ (X) be the set of all n-tuples of operators on X. X' will denote the dual space of X, S(X) its unit sphere and .PI.(X) the subset of X*X' defined by .PI.(X)={(x,f).mem.X*X': ∥x∥=∥f∥=f(x)=1}.

  • PDF

Development of Self Tuning and Adaptive Fuzzy Controller to control of Induction Motor (유도전동기 드라이브의 제어를 위한 자기동조 및 적응 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.33-42
    • /
    • 2010
  • The induction motor drive applied to field oriented control is widely used in industry applications. However, it is deceased performance and authenticity by saturation, temperature changing, disturbance and parameters changing because modeling of induction motor is nonlinear and complex. In order to control variable speed operation, conventional PI-like controllers are commonly used. These controllers provide limited good performance over a wide range of operation, even under ideal field oriented conditions. This paper proposes self tuning PI controller based on fuzzy-neural network(FNN)-PI controller that is implemented using fuzzy control, neural network, and adaptive fuzzy controller(AFC). Also, this paper proposes estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FNN-PI, AFC and ANN controller. Also, this paper proposes the anlysis results to verify the effectiveness of controller.

Development of Real-Time COF Film Complex Inspection System using Color Image (컬러영상을 이용한 실시간 COF 필름 복합 검사시스템 개발)

  • Kim, Yong-Kwan;Lee, In Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.112-118
    • /
    • 2021
  • In this study, an inspection method using a color image is proposed to conduct a real-time inspection of covalent organic framework (COF) films to detect defects, if any. The COF film consists of an upper pattern SR and a lower PI. The proposed system detects the defects of more than 20 ㎛ on the SR surface owing to the characteristics of the pattern, whereas on the PI surface, it detects defects of more than 4 ㎛ by utilizing a micro-optical system. In the existing system, it is difficult for the operator to conduct a full inspection through a high-performance microscope. The proposed inspection algorithm performs the inspection by separating each color component using the color contrast of the pattern on the SR side, and on the PI surface it inspects the bonding state of the mounted chip. As a result, it is possible to confirm the exact location of the defects through the SR and PI surface inspections in the implemented inspection.

Surface Analysis and Electrical Properties for Complex with Concentration of Metal ion in LB Ultra-thin Films Using IMI-O Polymer (IMI-O 고분자 LB막의 금속 이온의 착체 농도에 따른 전기특성 및 표면분석)

  • Jung, S.B.;Yoo, S.Y.;Park, J.C.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1711-1713
    • /
    • 2000
  • We fabricated an IMI-O polymer containing an imidazole group that could form a complex structure between the monolayer and the metal ions at the air-water interface. Also, the surface analysis and the electrical properties of metal ion complex of Langmuir-Blodgett (LB) films were investigated by using $\pi$-A isotherms. Atomoic force microscopy (AFM), current-voltage (I-V) measurements. In the $\pi$-A isotherms the molecular area was expanded with $Fe^{3+}$ concentration increase. It is considered that the expansion of molecular area is due to electrostatic repulsion between the polymer chains and hydrophobic increase of ionic strength. In the I-V characteristics, it is found that the limiting area has effects on the change of conductivity. And, the dielectric relaxation time decreased for increase of the $Fe^{3+}$ concentration.

  • PDF

Photophysical Properties of Highly Efficient Blue-Green Emitting Cationic Iridium (III) Complexes Containing Two 2-Phenylbenzothiazole Ligands and One Diphosphine Ligand

  • Yun, Seong-Jae;Song, Young-Kwang;Kim, Minji;Shin, Jaemin;Jin, Sung-Ho;Kang, Sung Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3199-3204
    • /
    • 2014
  • Two novel phosphorescent heteroleptic cationic Ir(III) complexes, Ir(bt)2(dmpe) (Ir1) and Ir (bt)2(dppe) (Ir2), where bt is 2-phenylbenzothiazole, dmpe is 1,2-bis(dimethylphosphino)ethane, and dppe is 1,2-bis(diphenyl-phosphino) ethane, were designed and synthesized. Their photophysical and electrochemical properties and the X-ray structure of the Ir1 complex were investigated. The prepared Ir(III) complexes exhibited blue-green emissions at 503-538 nm with vibronic fine structures in dichloromethane solution and PMMA film, implying that the lowest excited states are dominated by ligand-based $^3{\pi}-{\pi}^*$ transitions. The ${\pi}$-acceptor ability of the diphosphine ancillary ligand leads to blue-shift emission. The room temperature photoluminescent quantum yields (PLQYs) of Ir1 and Ir2 were 52% and 45%, respectively, in dichloromethane solution. These high PLQYs resulted from steric hindrances by the bulky cationic iridium complexes. The crystal structure of Ir1 was determined by X-ray crystallography, which revealed that central iridium adopted a distorted octahedral structure coordinated with two bt ligands (N^C) and one dmpe ligand (P^P) showing cis C-C and trans N-N dispositions. The bent nature of the dmpe ligand resulted in a relatively wide bite angle of $83.83^{\circ}$ of P-Ir-P.

Alkali-Metal Ion Catalysis and Inhibition in SNAr Reaction of 1-Halo-2,4-dinitrobenzenes with Alkali-Metal Ethoxides in Anhydrous Ethanol

  • Kim, Min-Young;Ha, Gyu Ho;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2438-2442
    • /
    • 2014
  • A kinetic study is reported for $S_NAr$ reaction of 1-fluoro-2,4-dinitrobenzene (5a) and 1-chloro-2,4-dinitrobenzene (5b) with alkali-metal ethoxides (EtOM, M = Li, Na, K and 18-crown-6-ether complexed K) in anhydrous ethanol. The second-order rate constant increases in the order $k_{EtOLi}$ < $k_{EtO^-}$ < $k_{EtONa}$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for the reaction of 5a and $k_{EtOLi}$ < $k_{EtONa}$ < $k_{EtO^-$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for that of 5b. This indicates that $M^+$ ion behaves as a catalyst or an inhibitor depending on the size of $M^+$ ion and the nature of the leaving group ($F^-$ vs. $Cl^-$). Substrate 5a is more reactive than 5b, although the $F^-$ in 5a is ca. $10pK_a$ units more basic than the $Cl^-$ in 5b, indicating that the reaction proceeds through a Meisenheimer complex in which expulsion of the leaving group occurs after the rate-determining step (RDS). $M^+$ ion would catalyze the reaction by increasing either the nucleofugality of the leaving group through a four-membered cyclic transition state or the electrophilicity of the reaction center through a ${\pi}$-complex. However, the enhanced nucleofugality would be ineffective for the current reaction, since expulsion of the leaving group occurs after the RDS. Thus, it has been concluded that $M^+$ ion catalyzes the reaction by increasing the electrophilicity of the reaction center through a ${\pi}$-complex between $M^+$ ion and the ${\pi}$-electrons in the benzene ring.

The Mechanism of the Photocyclization of N-(2-Haloarylmethyl)Pyridinium and N-(arylmethyl)-2-Halopyridinium Salts

  • Yong-Tae Park;Chang-Han Joo;Chung-Do Choi;Kum-Soo Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.163-169
    • /
    • 1991
  • The photochemical and photophysical properties of N-(2-haloarylmethyl)pyridinium, N-(arylmethyl)-2-halopyridinium, N-(2-haloarylmethyl)-2-halopyridinium salts and N-(2-halobenzyl)-isoquinolinium salt are studied. The pyridinium salts photocyclize to afford isoindolium salts, while the isoquinolium salts do not. In the photocyclization of N-(2-chlorobenzyl)-2-chloropyridinium salts, pyrido[2,1-a]-4-chloroisoindolium salt is formed by the cleavage of chlorine of pyridinium ring. This indicates that the excited moiety is not the phenyl ring, but the pyridinium ring. The triplet states of the pyridinium salts are believed to be largely involved in the photocyclization, since oxygen retards most of the reaction. Some assistance of a ${\pi}$-complex between the excited chlorine moiety of the salt and phenyl plane of the same molecule is required to explain the reactivity of the salts. N-(Benzyl)-2-chloropyridinium salt is two times more reactive than N-(2-chlorobenzyl)pyridinium salt. N-(Benzyl)-2-chloropyridinium salt can form ${\pi}-complex$ effectively because of the electron-rich phenyl group. The ${\pi}$-complex affords an intermediate, phenyl radical by cleaving the chlorine atom. The photocyclized product, isoindolium salt is obtained by losing the hydrogen atom from the phenyl radical. The reactive pyridinium salts 1a, 2a and 3a have a low fluorescence quantum yield (${\Phi}F$ < 0.01) and a higher triplet energy (ET > 68 kcal/mole) than the unreactive quinolinium salt. The unreactivity of isoquinolinium salt can be understood in relation to its high fluorescence quantum yield and its low triplet energy $(E_T = 61 kcal/mole).$.

Importance of Leu-5 and Pro-6 in the Inhibitory Activity of the Serratia marcescens Metalloprotease Inhibitor (SmaPI)

  • Bae, Kwang-Hee;Kim, Dong-Min;Kim, Sun-Taek;Kim, Tae-Hoon;Shin, Yong-Chul;Byun, Si-Myung
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.109-113
    • /
    • 2001
  • The Serratia marcescens metalloprotease inhibitor (SmaPI) is a proteinase inhibitor toward Serratia marcescens metalloprotease (SMP). The three-dimensional structure of SmaPI was calculated by computer modeling using the structure complex between SMP and the Erwinia chrysanthemi inhibitor as a template. Based on this model structure, the substitution of the amino acid residues, Ala4, Leu-5, Pro-6, and Thr-7, were located at the hinge region of the N-terminal segment by site-directed mutagenesis. Although the A4R and T7A mutant SmaPIs showed a nearly full inhibitory activity, the inhibitory activity of SmaPI decreased significantly when the Leu-5 was converted to Ala, Gly, Ile, or Val. Surprisingly, the L5I and L5V mutant SmaPIs showed less inhibitory activities than the L5A mutant. From these results, we suggested that the orientations and positions of respective aliphatic groups in the side-chain of position 5 mainly affected the inhibitory activity of SmaPI. The overall side-chain hydrophobicity was only slightly affected. The side-chain of the Leu-5 residue contributed approximately 0.79 kcal/mol out of 8.44 kcal/mol to the binding of SmaPI with SMP The inhibitory activities of P6A and F6G were also severely decreased. The Pro-6 may have a critical role in maintaining the strict conformation of the N-terminal portion that may be important in the inhibitory activity of SmaPI. In conclusion, Leu-5 and Pro-6 have crucial roles in the inhibitory function of SmaPI toward SMP.

  • PDF