• Title/Summary/Keyword: $\mu$ synthesis

Search Result 1,510, Processing Time 0.027 seconds

Novel Graphene Volatile Memory Using Hysteresis Controlled by Gate Bias

  • Lee, Dae-Yeong;Zang, Gang;Ra, Chang-Ho;Shen, Tian-Zi;Lee, Seung-Hwan;Lim, Yeong-Dae;Li, Hua-Min;Yoo, Won-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.120-120
    • /
    • 2011
  • Graphene is a carbon based material and it has great potential of being utilized in various fields such as electronics, optics, and mechanics. In order to develop graphene-based logic systems, graphene field-effect transistor (GFET) has been extensively explored. GFET requires supporting devices, such as volatile memory, to function in an embedded logic system. As far as we understand, graphene has not been studied for volatile memory application, although several graphene non-volatile memories (GNVMs) have been reported. However, we think that these GNVM are unable to serve the logic system properly due to the very slow program/read speed. In this study, a GVM based on the GFET structure and using an engineered graphene channel is proposed. By manipulating the deposition condition, charge traps are introduced to graphene channel, which store charges temporarily, so as to enable volatile data storage for GFET. The proposed GVM shows satisfying performance in fast program/erase (P/E) and read speed. Moreover, this GVM has good compatibility with GFET in device fabrication process. This GVM can be designed to be dynamic random access memory (DRAM) in serving the logic systems application. We demonstrated GVM with the structure of FET. By manipulating the graphene synthesis process, we could engineer the charge trap density of graphene layer. In the range that our measurement system can support, we achieved a high performance of GVM in refresh (>10 ${\mu}s$) and retention time (~100 s). Because of high speed, when compared with other graphene based memory devices, GVM proposed in this study can be a strong contender for future electrical system applications.

  • PDF

Synthesis of High-Quality Monolayer Graphene on Copper foil by Chemical Vapor Deposition

  • Lee, Su-Il;Kim, Yu-Seok;Song, U-Seok;Jo, Ju-Mi;Kim, Seong-Hwan;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.351-352
    • /
    • 2011
  • 그래핀(Graphene)은 2차원 평면구조의 $sp^2$ 탄소 결합으로 이루어진 물질이다. 일반적으로 그래핀은 탄소 원자 한층 정도의 얇은 두께를 가지면서 강철의 100배 이상 높은 강도, 다이아몬드보다 2배 이상 뛰어난 열 전도성, 그리고 규소보다 100배 이상 빠른 전자이동도 등의 매우 우수한 특성을 지닌다. 그래핀을 합성하거나 얻는 방법에는, 기계적 박리법(Micro mechanical exfoliation), 산화흑연(graphite oxide)을 이용한 reduced graphene oxide(RGO)방법과 탄화 규소(SiC)를 이용한 epitaxial growth 방법 등이 있지만, 대 면적화가 어렵거나 구조적 결함이 큰 문제점이 있다. 반면, 탄화수소(hydrocarbon)를 탄소 공급원으로 하는 열화학 기상 증착법(Thermal chemical vapor deposition, TCVD)은 구조적 결함이 상대적으로 적으면서 대 면적화가 가능하다는 이점 때문에 최근 가장 많이 이용되고 있는 방법이다. TCVD를 이용, 니켈, 몰리브덴, 금, 코발트 등의 금속에서 그래핀 합성연구가 보고되었지만, 대부분 수 층(fewlayer)의 그래핀이 합성되었다. 하지만, 구리 촉매를 이용하는 것이 단층 그래핀 합성에 매우 효율적이라는 연구결과가 보고되었다. 구리의 경우, 낮은 탄소융해도(solubility of carbon) 때문에 표면에서 self limiting 과정을 통하여 단층 그래핀이 합성된다. 그러나 단층 그래핀 일지라도 면저항(sheet resistance)이 매우 높고, 이론적 계산값에 비해 전자이동도(electron mobility)가 낮게 측정된다. 이러한 원인은 구조적 결함에서 기인된 것으로써 산업으로의 응용을 어렵게 만들기 때문에 양질의 단층 그래핀 합성연구는 필수적이다[1,2]. 본 연구에서는 TCVD를 이용하여 구리 포일(25 ${\mu}m$, Alfa Aeser) 위에 메탄가스를 탄소공급원으로 하여 수소를 함께 주입하고, 메탄가스의 양과 합성시간, 열처리 시간을 조절하면서 균일한 단층 그래핀을 합성하였다. 합성된 그래핀을 $SiO_2$ (300 nm)기판위에 전사(transfer)후 라만 분광법(raman spectroscopy)과 광학 현미경(optical microscope)을 통하여 분석하였다. 그 결과, 열처리 시간이 증가할수록 촉매로 사용된 구리 포일의 grain size가 커짐을 확인하였으며, 구리 포일 위에 합성된 그래핀의 grain size는, 구리 포일의 grain size에 의존하여 커짐을 확인하였다. 또한 동일한 grain 내의 그래핀은 균일한 층으로 합성되었다. 이는 기계적 박리법, RGO 방법, epitaxial growth 방법으로 얻은 그래핀과 비교하여 매우 뛰어난 결정성을 지님이 확인되었다. 본 연구를 통하여 면적이 넓으면서도 결정성이 매우 뛰어난 양질의 단층 그래핀 합성 방법을 확립하였다.

  • PDF

Characterization of ent-Kaurenoic Acid 13-Hydroxylase in Steviol Biosynthesis of Stevia rebaudiana Bertoni (Stevia rebaudiana Bertoni의 Steviol 생합성 효소 ent-Kaurenoic Acid 13-Hydroxylase의 특성)

  • Shibata, Hitoshi;Kim, Keun-Ki
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.501-507
    • /
    • 1997
  • Chloroplasts isolated from Stevia rebaudiana Bertoni leaves contained an enzyme activity which catalyzed hydroxylation of ent-kaurenoic acid (ent-kaur-16-en-19-oic acid; ent-KA) to steviol (ent-13-hydroxy kaur-16-en-19-oic acid), the diterpenoid carboxylic alcohol which is the aglycone of sweet stevioside-related glycosides. $[^(14)C]-methylated$ ent-KA was used to localize ent-KA hydroxylase. $[^(14)C]-methyl-KA$ was most actively was transformed into methyl-steviol in chloroplast. The enzymatic activity was found in stroma fraction but not in thylakoid membrane in Stevia rebaudiana Bertoni. However, ent-KA 13-hydroxylase activity was not detected in stroma fraction of either Spinacia oleracea and Solidago altissima. The reaction products using $[^(14)C]-methyl-KA$ were purified and identified on TLC autoradiogram. The hydroxylation of ent-KA from stromal protein to form steviol required NADPH and oxygen. FAD and riboflavin stimulated the enzyme activity 1.5-and 1.7-fold, respectively. It also turned out that the activity of this enzyme using methyl-KA as a substrate was 16.7% that of ent-KA. The purified ent-KA 13-hydroxylase did not act on t-cinnamic acid, 4-hydroxyphenyl acetic acid, choline and resorcinol, known as monooxygenase and hydroxylase substrates.

  • PDF

Measurements of Storm Waves Generated by Typhoons Passed through Eastside of Korea Strait from 2004 to 2006 (2004~2006년 대한해협 동쪽을 통과한 태풍들에 의한 폭풍파 관측)

  • Jeong, Weon Mu;Kim, Sang Ik;Baek, Won Dae;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.2
    • /
    • pp.65-71
    • /
    • 2014
  • In recent years, strong typhoons have passed South Korea almost every year and severe damages were incurred directly and indirectly. However, instances where wave and wind data were procured from the offshore approach path of the typhoon are very rare and thus researchers are experiencing difficulties in obtaining calibration and verification data of typhoon-generated wave modeling. This paper provides a synthesis of records of observations by the Korea Meteorological Administration and Korea Institute of Ocean Science and Technology on storm waves generated by the typhoons SONGDA, NABI, and SHANSHAN that passed from 2004 to 2006 in order to help researchers interested in typhoon-generated wave numerical modeling. Although the trajectories of typhoon NABI and SHANSHAN were east of the Korea Strait, a significant wave height of 8.3 m was measured at Namhyeongjedo located east of Geojedo. Moreover, an unprecedented significant wave height of 12.2 m was measured for both typhoons at a station 1.4 km away from Yeongil Bay breakwater. Meanwhile, a comparative analysis of data obtained with a ocean data buoy at Geojedo and a Directional Waverider at Namhyeongjedo showed maximum wave heights that were similar but considerably different significant wave heights.

Inhibitory effect of Aralia elata ethanol extract against skin damage in UVB-exposed human keratinocytes and human dermal fibroblasts (두릅순 에탄올 추출물의 인간유래 피부각질형성세포와 피부섬유아세포에서의 자외선에 의한 광노화 억제효과)

  • Yang, Jiwon;Kwak, Chungshil
    • Journal of Nutrition and Health
    • /
    • v.49 no.6
    • /
    • pp.429-436
    • /
    • 2016
  • Purpose: Solar ultraviolet (UV) radiation causes inflammation and matrix metalloproteinase (MMP) overexpression and extracellular matrix depletion, leading to skin photoaging such as wrinkle formation, dryness, and sagging. Activation of MMP is influenced by various molecules such as reactive oxygen species (ROS), proinflammatory cytokines, and transient receptor potential vanilloid type (TRPV)-1, which are increased in UV-irradiated skin cells. Aralia elata (AE) ethanolic extract was reported to inhibit ROS generation caused by UVB-irradiation in keratinocytes. In this study, we investigated the photoprotective effect of AE ethanolic extract on UVB-irradiated human keratinocytes (HaCaT) and human dermal fibroblasts (HDF). Methods: AE was freeze-dried, extracted in 70% ethanol, and concentrated. Skin cells were treated with AE extract for 24 h and then exposed to UVB ($55mJ/cm^2$). After 48 h of incubation, proinflammatory cytokines, MMP-1, type-1 procollagen, and TRPV-1 levels were measured by ELISA or Western blotting. Results: Treatment with AE extract ($100{\mu}g/mL$) significantly inhibited UVB-induced IL-6, IL-8, and $PGE_2$ production in HaCaT by 25.6%, 5.3%, and 70.2%, respectively, and also inhibited elevation of MMP-1 and TRPV-1 caused by UVB irradiation by 20.0% and 41.9%, respectively (p < 0.05). In HDF, AE extract treatment significantly inhibited both elevation of MMP-1 and reduction of type-1 procollagen caused by UVB irradiation (p < 0.05). In addition, type-1 procollagen was elevated by AE extract treatment in normal HDFs (p < 0.05). Conclusion: AE 70% ethanol extract has photoprotective ability via reduction of proinflammatory mediators, TRPV-1 and MMP-1 production, and elevation of collagen synthesis. Our findings suggest that AE extract might be a good natural material to protect against UVB-induced premature skin aging.

Hydrothermal Synthesis and Mechanical Characterization of ZrO2 by Y2O3 Stabilizer Contents (Y2O3안정화제 첨가량에 따라 수열합성법으로 제조된 ZrO2-Xmol% Y2O3분말의 합성 및 기계적 특성)

  • Lee, Hak-Joo;Kim, Taik-Nam;Bea, Sung-Chul;Go, Myung-Won;Ryu, Jae-Kyung
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.518-523
    • /
    • 2010
  • In this study, partially stabilized zirconia was synthesized using a chemical $Y_2O_3$ stabilizer and hydrothermal method. First, $YCl_3-6H_2O$ and $ZrCl_2O-8H_2O$ was dissolved in distilled water. Y-TZP (a $Y_2O_3$-doped toughened zirconia polycrystalline precursor) was also prepared by conventional co-precipitates in the presence of an excess amount of $NH_4OH$ solution under a fixed pH of 12. The Y-TZP precursors were filtered and repeatedly washed with distilled water to remove $Cl^-$ ions. $ZrO_2$-Xmol%$Y_2O_3$ powder was synthesized by a hydrothermal method using Teflon Vessels at $180^{\circ}C$ for 6 h of optimized condition. The powder added with the Xmol%- $Y_2O_3$ (X = 0,1,3,5 mol%) stabilizer of the $ZrO_2$ was synthesized. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens of $33mm{\times}8mm{\times}3$ mm for three-point bend tests were used in the mechanical properties evaluation. A teragonal phase was observed in the samples, which contains more than 3 mol% $Y_2O_3$. The $3Y-ZrO_2$ agglomerated particle size was measured at $7.01{\mu}m$. The agglomerated particle was clearly observed in the sample of 5 mol % $Y_2O_3-ZrO_2$, and and the agglomerated particle size was measured at 16.4 um. However, a 20 nm particle was specifically observed by FE-SEM in the sample of 3 mol% $Y_2O_3-ZrO_2$. The highest bending fracture strength was measured as 321.3 MPa in sample of 3 mol% $Y_2O_3-ZrO_2$.

Synthesis and Properties of Nonlinear Optical Polyquinonediimine Containing Di-Azobenzene Group in the Side Chain (곁사슬에 디아조벤젠기를 갖는 비선형 광학 폴리퀴논디이민의 합성과 특성에 관한 연구)

  • Lee, Sang-Bae;Yang, Jung-Sung;Park, Dong-Kyu
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.496-502
    • /
    • 2001
  • Thermally stable polyquinonediimines(PQDI) containing di-azobenzene in the side chain were synthesized by means of condensation polymerization under $TiCl_4$. The synthesized monomers and polymers were identified by FT-IR, $^1H-NMR$, and elemental analysis. Especially, the polymerization of PQDI was confirmed by the double-bonding peak of >C=N appearing near 1625cm$^{-1}$ in FT-IR spectrum. PQDI with di-azobenzene group in one side chain was insoluble in methanol, acetone and non-polar solvents having big dielectric constant, but had good solubility in polar solvents having small dielectric constant. Molecular weight distribution of PQDI measured by GPC was 1.38. It was confirmed to be amorphous polymer through X-ray diffraction by the appearance of the halo in case of PQDI containing di-azobenzene in the side chain. The glass transition temperature ($_g$) of synthesized polymer was measured to be 116$^{\circ}C$ by differential scanning calorimetry. The SHG value for ${\chi}^{(2)}$ was 1.2 pm/V (${\lambda}$ = 1.542 ${\mu}$m). The SHG value slightly decreased in an early stage but showed temporal stability after 20 hours.

  • PDF

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

Synthesis, Crystal Structure and Theoretical Calculation of a Novel Nickel(II) Complex with Dibromotyrosine and 1,10-Phenanthroline

  • Huang, Guimei;Zhang, Xia;Fan, Yuhua;Bi, Caifeng;Yan, Xingchen;Zhang, Zhongyu;Zhang, Nan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2889-2894
    • /
    • 2013
  • A new complex [$Ni(phen)(C_9H_8Br_2NO_3)_2{\cdot}2CH_3OH{\cdot}2H_2O$] [phen: 1,10-phenanthroline $C_9H_8Br_2NO_3$: 3,5-dibromo-L-tyrosine] was synthesized and characterized by IR, elemental analysis and single crystal X-ray diffraction. X-ray crystallography shows that Ni(II) ion is six-coordinated. The Ni(II) ion coordinates with four nitrogen atoms and two oxygen atoms from three ligands, forming a mononuclear Ni(II) complex. The crystal crystallizes in the Orthorhombic system, space group $P2_12_12$ with a = 12.9546 ${\AA}$, b = 14.9822 ${\AA}$, c = 9.9705 ${\AA}$, V = 1935.2 ${\AA}$, Z = 1, F(000) = 1008, S = 0.969, ${\rho}_{calcd}=1.742g{\cdot}cm^{-3}$, ${\mu}=4.688mm^{-1}$, $R_1$ = 0.0529 and $wR_2$ = 0.0738 for 3424 observed reflections (I > $2{\sigma}(I)$). Theoretical study of the title complex was carried out by density functional theory (DFT) method and the B3LYP method employing the $6-3l+G^*$ basis set. The energy gap between HOMO and LUMO indicates that this complex is prone to interact with DNA. CCDC: 908041.

Synthesis of nanosized WC powder by Chemical Vapor Condensation Process (화학기상응축법에 의한 WC 나노분말의 합성연구)

  • ;;;Oleg V. Tolochko
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.04b
    • /
    • pp.45-45
    • /
    • 2002
  • 나노미터 크기의 결정립을 가지는 나노분말 및 나노복합분말의 제조와 특성에 관한 연구가 매우 활발하다. 나노복합분말의 제조방법에는 기상증발후 응축법, 화학응축법, 기계적합금법 등이 있으나, 고순도 및 균일한 크기분포의 분말과 응집되지 않은 분말의 제조 조건을 가장 잘 만족하는 방법은 화학기상응축법(Chemical Vapor Condensation; CVC)이다. 본 연구그룹 에서는 CVC밤법으로 이용하여 공구/금형재료에 가장 많이 사용되는 WC/Co 합금의 결정립을 n nm크기로 극미세화고자하는 연구을 진행하고 있다. 본 연구에서는 이들 WC/Co합금제조시 가장 중요한 출발분말인 나노크기 WC 분말의 제조와 그 특성에 관하여 연구하고자 하였다. 나노미터 WC분말을 제조하기 의한 전구체는 고상의 금속유기물인Tungstenhexacarbonyl$(W(CO)_6)$ 을 사용하였다. 수평관상로을 반응기로 사용하였으며, 노내의 온도을 500-110$0^{\circ}C$로 변화시 키면서 WC 분말을 합성하였다. 반응기 및 포집기 내부를 대기분위기, 상압의 Ar분위기, 진공 분위기로 변화시켜 압력 및 분위기의 영향을 조사하였다. 포집기는 상온 및 액체질소로 냉각 한 Chiller을 사용하였다. 형성분말의 상분석은 XRD로 조사하였으며, 형태 및 결정립크기는 TEM로 분석하였다. 반응온도 600 -1 OOO$^{\circ}C$의 온도범위에서 검은색의 WC 분말이 제조되었다. XRD 분석의 결과 로 제조된 분말은 상온에서 준안정상인 Hexagonal 구조의 $\gammar-WC_{1-x}$ 상이였으며, TEM 분석결 과 상압하에서는 약 30nm이하의 WC분말이 제조되었으며, 그 형태는 둥근 4각형의 모양을 지녔다. 감압하에서 진행한 경우 결정립의 크기는 8nm이하를 가졌다.곤가스로 산화를 방지하였고, 냉매로는 질소가스를 이용하였다. 제조된 분말을 기ㅖ적 분급법을 이용하여 분급하였고, 냉매로는 질소가스를 이용하였다. 제조된 분말을 기계적 분급ㅂ법을 이용하여 분급하였고, 압출에 이용된 분말은 250$\mu\textrm{m}$이하의 크기를 사용하였다. 또한 분말제조과정 중 형성되는 표면산화층을 제거하기 위하여 36$0^{\circ}C$에서 4시간동안 수소 환원처리를 행하였다. 제조된 분말은 열간 압출을 위하여 Aㅣcan에 넣고 냉간성형체를 만들고, 진공처리를 한 후 밀봉하여 탈가스처리를 하였다. 압출다이는 압출비가 각각 28:1과 16:1인 평다이(9$0^{\circ}C$)를 사용하여 각각 내경이 9, 12cm이고, 길이가 50, 30cm인 압출재를 제조하였다. 열간압출한 후의 미세조직을 광학현미경으로 압출방향에 평행한 방향과 수직방향으로 관찰하였고, 열간 압출재 이방성을 검토하기 위하여 X선 회절분석을 실실하여 결정방위를 확인하였다. 전기 비저항 및 Seebeck 계수 측정을 위하여 각각 2$\times$2$\times$10$mm^3$ 그리고 5$\times$5$\times$10TEX>$mm^3$ 크기의 시편을 준비하였다.준비하였다.전류를 구성하는 주요 입자의 에너지 영역(75~l13keV)에서 가장 높은(0.80) 상관계수를 기록했다. 넷째, 회복기 중에 일어나는 입자들의 유입은 자기폭풍의 지속시간을 연장시키는 경향을 보이며 큰 자기폭풍일수록 현저했다. 주상에서 관측된 이러한 특성은 서브스톰 확장기 활동이 자기폭풍의 발달과 밀접한 관계가 있음을 시사한다.se that were all low in two aspects, named "the Nonsign

  • PDF