• Title/Summary/Keyword: $\mathbb{S}$-nonsingular

Search Result 3, Processing Time 0.018 seconds

General Linear Group over a Ring of Integers of Modulo k

  • Han, Juncheol
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.255-260
    • /
    • 2006
  • Let $m$ and $k$ be any positive integers, let $\mathbb{Z}_k$ the ring of integers of modulo $k$, let $G_m(\mathbb{Z}_k)$ the group of all $m$ by $m$ nonsingular matrices over $\mathbb{Z}_k$ and let ${\phi}_m(k)$ the order of $G_m(\mathbb{Z}_k)$. In this paper, ${\phi}_m(k)$ can be computed by the following investigation: First, for any relatively prime positive integers $s$ and $t$, $G_m(\mathbb{Z}_{st})$ is isomorphic to $G_m(\mathbb{Z}_s){\times}G_m(\mathbb{Z}_t)$. Secondly, for any positive integer $n$ and any prime $p$, ${\phi}_m(p^n)=p^{m^2}{\cdot}{\phi}_m(p^{n-1})=p{^{2m}}^2{\cdot}{\phi}_m(p^{n-2})={\cdots}=p^{{(n-1)m}^2}{\cdot}{\phi}_m(p)$, and so ${\phi}_m(k)={\phi}_m(p_1^n1){\cdot}{\phi}_m(p_2^{n2}){\cdots}{\phi}_m(p_s^{ns})$ for the prime factorization of $k$, $k=p_1^{n1}{\cdot}p_2^{n2}{\cdots}p_s^{ns}$.

  • PDF

GENERALIZED MATRIX FUNCTIONS, IRREDUCIBILITY AND EQUALITY

  • Jafari, Mohammad Hossein;Madadi, Ali Reza
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1615-1623
    • /
    • 2014
  • Let $G{\leq}S_n$ and ${\chi}$ be any nonzero complex valued function on G. We first study the irreducibility of the generalized matrix polynomial $d^G_{\chi}(X)$, where $X=(x_{ij})$ is an n-by-n matrix whose entries are $n^2$ commuting independent indeterminates over $\mathbb{C}$. In particular, we show that if $\mathcal{X}$ is an irreducible character of G, then $d^G_{\chi}(X)$ is an irreducible polynomial, where either $G=S_n$ or $G=A_n$ and $n{\neq}2$. We then give a necessary and sufficient condition for the equality of two generalized matrix functions on the set of the so-called ${\chi}$-singular (${\chi}$-nonsingular) matrices.

LINEAR OPERATORS PRESERVING MAXIMAL COLUMN RANKS OF NONNEGATIVE REAL MATRICES

  • Kang, Kyung-Tae;Kim, Duk-Sun;Lee, Sang-Gu;Seol, Han-Guk
    • Korean Journal of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.101-114
    • /
    • 2007
  • For an $m$ by $n$ nonnegative real matrix A, the maximal column rank of A is the maximal number of the columns of A which are linearly independent. In this paper, we analyze relationships between ranks and maximal column ranks of matrices over nonnegative reals. We also characterize the linear operators which preserve the maximal column rank of matrices over nonnegative reals.

  • PDF