• Title/Summary/Keyword: $\kappa$

Search Result 3,505, Processing Time 0.033 seconds

Melittin Inhibits DU -145 Human Refractory Prostate Cancer Cell Growth Through Induction of Apoptosis Via Inactivation of NF-${\kappa}$B (Melittin이 NF-${\kappa}$B의 불활성화를 통한 DU-145 전립선 암세포의 성장 및 세포자멸사 유도에 미치는 영향)

  • Choi, Chul-Hoon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.26 no.3
    • /
    • pp.39-48
    • /
    • 2009
  • 목적 : 이 연구는 봉약침의 주요성분인 멜리틴이 NF-${\kappa}$B의 활성억제를 통하여 세포자멸사를 유도하고, 전립선 암세포주인 DU-145 세포의 성장을 억제하는지를 확인하고 멜리틴의 NF-${\kappa}$B 활성억제기전을 살펴보고자 하였다. 방법 : 멜리틴을 처리한 후 DU-145의 성장억제를 관찰하기 위해 WST-1 assay를 시행하였고, 세포자멸 사의 관찰에는 DAPI stairung assay를 통한 세포형태관찰을 시행하였으며, 염증관련유전자 발현 관찰에는 western blot analysis를 시행하였고, 세포자멸사와 연관된 NF-${\kappa}$B의 활성 변화를 관찰하기 위해 EMSA와 luciferase assay를 시행하였으며, DU-145에서 멜리틴과 NF-${\kappa}$B의 상호작용을 관찰하기 위해 transient transfection assay를 시행 시 세포생존율과 NF-${\kappa}$B의 활성 변동을 측정하였다. 결과 : DU-145 세포에 멜리틴을 처리한 후, 전립선암세포의 성장, 세포자멸사의 유발, 염중관련유전자 발현 및 NF-${\kappa}$B의 활성, NF-${\kappa}$B의 p50 치환 후 NF-${\kappa}$B의 활성과 DU-145 세포 증식에 미치는 영향을 관찰하여 다음과 같은 결과를 얻었다. 1. DU-145 세포에서 멜리틴을 처리한 후 세포자멸사가 유도되어 세포성장이 억제되었다. 2. DU-145 세포에서 멜리틴을 처리한 후 염증관련유전자 발현 및 NF-${\kappa}$B의 활성에 유의한 감소를 나타내었다. 3. DU-145 세포에서 NF-${\kappa}$B의 p50와 IKK들을 치환하여 작용기를 없애고 멜리틴을 처리하였을 경우에도 세포활성 및 NF-${\kappa}$B의 활성의 유의한 감소를 나타내었다.

  • PDF

Effect of FK506 and Cyclosporin A on $I{\kappa}B{\alpha}$ Degradation and $IKK{\alpha}$ Pathway in Bronchial Epithelial Cells, Monocytes, Lymphocytes and Alveolar Macrophages (FK506과 cyclosporin A가 기관지상피세포, 단핵구, 림프구 및 폐포대식세포에서 $I{\kappa}B{\alpha}$ 분해 및 $IKK{\alpha}$ 활성에 미치는 효과)

  • Yoon, Ho Il;Lee, Chang-Hoon;Lee, Hee-Seok;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.4
    • /
    • pp.449-458
    • /
    • 2003
  • Background : Cyclosporin A(CsA) and tacrolimus(FK506) have been widely used as immunosuppressants. The effects of CsA, or FK506, on the $I{\kappa}B/NF-{\kappa}B$ pathway have been shown to vary according to the cell type. However, their effects on the $I{\kappa}B/NF-{\kappa}B$ pathway have not been reported in bronchial epithelial cells. In this study, the effects of CsA and FK506 on the $I{\kappa}B/NF-{\kappa}B$ pathway in bronchial epithelial cells, monocytes, lymphocytes and alveolar macrophages were evaluated. The relationship between their effects on the $I{\kappa}B/NF-{\kappa}B$ pathway and $I{\kappa}B$ kinase(IKK) activity was also investigated. Methods : BEAS-2B and A549 cells, pulmonary alveolar macrophages, peripheral blood monocytes and lymphocytes were used. The cells were pre-treated with CsA, or FK506, for various time periods, followed by stimulation with TNF-${\alpha}$, LPS or IL-$1{\beta}$. The $I{\kappa}B{\alpha}$ expressions were assayed by Western blot analyses. The IKK activity was evaluated by an in vitro immune complex kinase assay, using GST-$I{\kappa}B{\alpha}$ as the substrate. Results : Neither CsA nor FK506 affected the level of $I{\kappa}B{\alpha}$ expression in any of the cell types used in this study. CsA pre-treatment inhibited the TNF ${\alpha}$-induced $I{\kappa}B{\alpha}$ degradation in bronchial epithelial cells. In contrast, the TNF ${\alpha}$-induced $I{\kappa}B{\alpha}$ degradation was not affected by FK506 pre-treatment. However, FK506 suppressed the cytokine-induced $I{\kappa}B{\alpha}$ degradation in the pulmonary alveolar macrophages, peripheral blood monocytes and lymphocytes. The inhibitory effect of CsA, or FK506, on $I{\kappa}B{\alpha}$ degradation was not related to IKK. Conclusions : CsA and FK506 suppressed the $I{\kappa}B{\alpha}$ degradation in bronchial epithelial cells, monocytes, lymphocytes and alveolar macrophages, so this may not be mediated through IKK.

Role of Insulin in the Activation of $NF-{\kappa}B/I{\kappa}B$ Pathway in Macrophage Cells (대식세포주에서 인슐린이 $I{\kappa}B/NF-{\kappa}B$ 경로 활성화에 미치는 영향)

  • Lee, Sang-Min;Jang, Yeon-Sil;Lee, Choon-Taek;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.68 no.3
    • /
    • pp.168-174
    • /
    • 2010
  • Background: Sepsis still has a high mortality rate despite adequate supportive care. Newer therapeutic modalities have been developed but they have generally ended in failure. Recently, insulin was reported to have an anti-inflammatory effect by inhibiting the $I{\kappa}B/NF-{\kappa}B$ pathway, and may have therapeutic potential in sepsis. However, the precise mechanism of the anti-inflammatory effect of insulin is unclear. This study examined the role of insulin in activating $I{\kappa}B/NF-{\kappa}B$ in macrophage. Methods: Raw 264.7 cells, a murine macrophage cell line, were used in this experiment. Western blotting using $I{\kappa}B$ Ab and phosphor-specific $I{\kappa}B$ Ab was performed to evaluate the degradation and phosphorylation of $I{\kappa}B$ cells. For the $I{\kappa}B$ Kinase (IKK) activity, an immune complex kinase assay was performed. The level of interleukin-6 (IL-6) was measured by ELISA to determine the level of proinflammatory cytokine. Results: $I{\kappa}B{\alpha}$ degradation began 30 min after lipopolysaccharide (LPS) treatment. However, an insulin pretreatment suppressed the $I{\kappa}B{\alpha}$ degradation caused by the LPS treatment. The phosphorylation of $I{\kappa}B{\alpha}$ and IKK activity was also inhibited by the insulin pretreatment. Finally, the insulin pretreatment showed a tendency to suppress the induction of IL-6 by LPS. Conclusion: Insulin might have an anti-inflammatory effect though partial inhibition of the $I{\kappa}B/NF{\kappa}B$ pathway in macrophage cell lines.

No Relevance of NF-${\kappa}B$ in the Transcriptional Regulation of Human Nanog Gene in Embryonic Carcinoma Cells

  • Seok, Hyun-Jeong;Kim, Young-Eun;Park, Jeong-A;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • Embryonic stem (ES) cells can self-renew maintaining the undifferentiated state. Self renewal requires many factors such as Oct4, Sox2, FoxD3, and Nanog. NF-${\kappa}B$ is a transcription factor involved in many biological activities. Expression and activity of NF-${\kappa}B$ increase upon differentiation of ES cells. Reportedly, Nanog protein directly binds to NF-${\kappa}B$ protein and inhibits its activity in ES cells. Here, we found a potential binding site of NF-${\kappa}B$ in the human Nanog promoter and postulated that NF-${\kappa}B$ protein may regulate expression of the Nanog gene. We used human embryonic carcinoma (EC) cells as a model system of ES cells and confirmed decrease of Nanog and increase of NF-${\kappa}B$ upon differentiation induced by retinoic acid. Although deletion analysis on the DNA fragment including NF-${\kappa}B$ binding site suggested involvement of NF-${\kappa}B$ in the negative regulation of the promoter, site-directed mutation of NF-${\kappa}B$ binding site had no effect on the Nanog promoter activity. Furthermore, no direct association of NF-${\kappa}B$ with the Nanog promoter was detected during differentiation. Therefore, we conclude that NF-${\kappa}B$ protein may not be involved in transcriptional regulation of Nanog gene expression in EC cells and possibly in ES cells.

Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom

  • Kim, Deok-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.36 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • Background: This study investigated the anti-inflammatory effects of bee venom (BV) through the inhibition of nuclear factor kappa beta ($NF-{\kappa}B$) expression in macrophages and keratinocytes. Methods: Cell viability assays were performed to investigate the cytotoxicity of BV in activated macrophages [lipopolysaccharide (LPS)] and keratinocytes [interferon-gamma/tumor necrosis factor-alpha ($IFN-{\gamma}/TNF-{\alpha}$)]. A luciferase assay was performed to investigate the cellular expression of $NF-{\kappa}B$ in relation to BV dose. The expression of $NF-{\kappa}B$ inhibitors ($p-I{\kappa}B{\alpha}$, $I{\kappa}B{\alpha}$, and p50 and p65) were determined by Western Blot analysis, and the electromobility shift assay. A nitrite quantification assay was performed to investigate the effect of BV, and $NF-{\kappa}B$ inhibitor on nitric oxide (NO) production in macrophages. In addition, Western Blot analysis was performed to investigate the effect of BV on the expression of mitogen-activated protein kinases (MAPK) in activated macrophages and keratinocytes. Results: BV was not cytotoxic to activated macrophages and keratinocytes. Transcriptional activity of $NF-{\kappa}B$, and p50, p65, and $p-I{\kappa}B{\alpha}$ expression was reduced by treatment with BV in activated macrophages and keratinocytes. Treatment with BV and an $NF-{\kappa}B$ inhibitor, reduced the production of NO by activated macrophages, and also reduced $NF-{\kappa}B$ transcriptional activity in activated keratinocytes (compared with either BV, or $NF-{\kappa}B$ inhibitor treatment). Furthermore, BV decreased p38, p-p38, JNK, and p-JNK expression in LPS-activated macrophages and $IFN-{\gamma}/TNF-{\alpha}$-activated keratinocytes. Conclusion: BV blocked the signaling pathway of $NF-{\kappa}B$, which plays an important role in the inflammatory response in macrophages and keratinocytes. These findings provided the possibility of BV in the treatment of atopic dermatitis.

NF-κB and Therapeutic Approach

  • Lee, Chang-Hoon;Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.219-240
    • /
    • 2009
  • Since NF-${\kappa}B$ has been identified as a transcription factor associated with immune cell activation, groups of researchers have dedicated to reveal detailed mechanisms of nuclear factor of ${\kappa}B$ (NF-${\kappa}B$) in inflammatory signaling for decades. The various molecular components of NF-${\kappa}B$ transcription factor pathway have been being evaluated as important therapeutic targets due to their roles in diverse human diseases including inflammation, cystic fibrosis, sepsis, rheumatoid arthritis, cancer, atherosclerosis, ischemic injury, myocardial infarction, osteoporosis, transplantation rejection, and neurodegeneration. With regards to new drugs directly or indirectly modulating the NF-${\kappa}B$ pathway, FDA recently approved a proteasome inhibitor bortezomib for the treatment of multiple myeloma. Many pharmaceutical companies have been trying to develop new drugs to inhibit various kinases in the NF-${\kappa}B$ signaling pathway for many therapeutic applications. However, a gene knock-out study for $IKK{\beta}$ in the NF-${\kappa}B$ pathway has given rise to controversies associated with efficacy as therapeutics. Mice lacking hepatocyte $IKK{\beta}$ accelerated cancer instead of preventing progress of cancer. However, it is clear that pharmacological inhibition of $IKK{\beta}$ appears to be beneficial to reduce HCC. This article will update issues of the NF-${\kappa}B$ pathway and inhibitors regulating this pathway.

SIGNED TOTAL κ-DOMATIC NUMBERS OF GRAPHS

  • Khodkar, Abdollah;Sheikholeslami, S.M.
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.551-563
    • /
    • 2011
  • Let ${\kappa}$ be a positive integer and let G be a simple graph with vertex set V(G). A function f : V (G) ${\rightarrow}$ {-1, 1} is called a signed total ${\kappa}$-dominating function if ${\sum}_{u{\in}N({\upsilon})}f(u){\geq}{\kappa}$ for each vertex ${\upsilon}{\in}V(G)$. A set ${f_1,f_2,{\ldots},f_d}$ of signed total ${\kappa}$-dominating functions of G with the property that ${\sum}^d_{i=1}f_i({\upsilon}){\leq}1$ for each ${\upsilon}{\in}V(G)$, is called a signed total ${\kappa}$-dominating family (of functions) of G. The maximum number of functions in a signed total ${\kappa}$-dominating family of G is the signed total k-domatic number of G, denoted by $d^t_{kS}$(G). In this note we initiate the study of the signed total k-domatic numbers of graphs and present some sharp upper bounds for this parameter. We also determine the signed total signed total ${\kappa}$-domatic numbers of complete graphs and complete bipartite graphs.

Estimation of Design Floods Using 3 and 4 Parameter Kappa Distributions (3변수 및 4변수 Kappa 분포에 의한 설계홍수량 추정)

  • Maeng, Seung-Jin;Kim, Byeoung-Jun;Kim, Hyung-San
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.49-55
    • /
    • 2009
  • This paper is to induce design floods through L-moment with 3 and 4 parameter Kappa distributions including test of independence by Wald-Wolfowitz, homogeneity by Mann-Whitney and outlier by Grubbs-Beck on annual maximum flood flows at 9 water level gaging stations in Han, Nakdong and Geum Rivers of South Korea. After analyzing appropriateness of the data of annual maximum flood flows by Kolmogorov-Smirnov test, 3 and 4 Kappa distributions were applied and the appropriateness was judged. The parameters of 3 and 4 Kappa distributions were estimated by L-moment method and the design floods by water level gaging station was calculated. Through the comparative analysis using the relative root mean square errors (RRMSE) and relative absolute errors (RAE) calculated by 3 and 4 parameter Kappa distributions with 4 plotting position formulas, the result showed that the design floods by 4 parameter Kappa distribution with Weibull and Cunnane plotting position formulas are closer to the observed data than those obtained by 3 parameter Kappa distribution with 4 plotting position formulas and 4 parameter Kappa distribution with Hazen and Gringorten plotting position formulas.

The Effect of $I{\kappa}B{\alpha}$-SR Gene Transfer on the Sensitivity of Human Lung Cancer Cell Lines to Cisplatin and Paclitaxel ($I{\kappa}B{\alpha}$-SR 유전자이입이 Cisplatin, Paclitaxel에 대한 폐암세포주의 감수성에 미치는 영향)

  • Lee, Seok-Young;Seol, Ja-Young;Park, Kyung-Ho;Park, Gun-Min;Hwang, Yong-Il;Kim, Cheol-Hyeon;Jang, Seung-Hun;Kwon, Sung-Youn;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Lee, Choon-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.51 no.2
    • /
    • pp.122-134
    • /
    • 2001
  • Background : Some chemotherapeutic drugs induce NF-${\kappa}B$ activation by degrading the $I{\kappa}B{\alpha}$ protein in cancer cells which contributes to anticancer drug resistance. We hypothesized that inhibiting $I{\kappa}B{\alpha}$ degradation would block NF-${\kappa}B$ activation and result in increased tumor cell mortality in response to chemotherapy. Methods : The "superrepressor" form of the NF-${\kappa}B$ inhibitor was transferred by an adenoviral vector (Ad-$I{\kappa}B{\alpha}$-SR) to the human lung cancer cell lines (NCI H157 and NCI H460). With a MIT assay, the level of sensitization to cisplatin and paclitaxel were measured. To confirm the mechanism, an EMSA and Annexin V assay were performed. Results : EMSA showed that $I{\kappa}B{\alpha}$-SR effectively blocked the NF-${\kappa}B$ activation induced by cisplatin. Transduction with Ad-$I{\kappa}B{\alpha}$-SR resulted in an increased sensitivity of the lung cancer cell lines to cisplatin and paclitaxel by a factor of 2~3 in terms of $IC_{50}$. Annexin-V analysis suggests that this increment in chemosensitivity to cisplatin probably occurs through the induction of apoptosis. Conclusion : The blockade of chemotherapeutics induced NF-${\kappa}B$ activation by inducing Ad-$I{\kappa}B{\alpha}$-SR, increased apoptosis and increasing the chemosensitivity of the lung cancer cell lines tested, subsequently. Gene transfer of $I{\kappa}B{\alpha}$-SR appears to be a new therapeutic strategy of chemosensitization in lung cancer.

  • PDF

The Proteasome Inhibitor MG132 Sensitizes Lung Cancer Cells to TRAIL-induced Apoptosis by Inhibiting NF-κ Activation (폐암세포주에서 NFκ 활성 억제를 통한 Proteasome 억제제 MG132의 TRAIL-유도성 Apoptosis 감작 효과)

  • Seo, Pil Won;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.6
    • /
    • pp.476-486
    • /
    • 2008
  • Background: TRAIL (TNF-related apoptosis inducing ligand) is a newly identified member of the TNF gene family which appears to have tumor-selective cytotoxicity due to the distinct decoy receptor system. TRAIL has direct access to caspase machinery and induces apoptosis regardless of p53 phenotype. Therefore, TRAIL has a therapeutic potential in lung cancer which frequently harbors p53 mutation in more than 50% of cases. However, it was shown that TRAIL also could activates $NF-{\kappa}B$ in some cell lines which might inhibit TRAIL-induced apoptosis. This study was designed to investigate whether TRAIL can activate $NF-{\kappa}B$ in lung cancer cell lines relatively resistant to TRAIL-induced apoptosis and inhibition of $NF-{\kappa}B$ activation using proteasome inhibitor MG132 which blocks $I{\kappa}B{\alpha}$ degradation can sensitize lung cancer cells to TRAIL-induced apoptosis. Methods: A549 (wt p53) and NCI-H1299 (null p53) lung cancer cells were used and cell viability test was done by MTT assay. Apoptosis was confirmed with Annexin V assay followed by FACS analysis. To study $NF-{\kappa}B$-dependent transcriptional activation, a luciferase reporter gene assay was used after making A549 and NCI-H1299 cells stably transfected with IgG ${\kappa}-NF-{\kappa}B$ luciferase construct. To investigate DNA binding of $NF-{\kappa}B$ activated by TRAIL, electromobility shift assay was used and supershift assay was done using anti-p65 antibody. Western blot was done for the study of $I{\kappa}B{\alpha}$ degradation. Results: A549 and NCI-H1299 cells were relatively resistant to TRAIL-induced apoptosis showing only 20~30% cell death even at the concentration 100 ng/ml, but MG132 ($3{\mu}M$) pre-treatment 1 hour prior to TRAIL addition greatly increased cell death more than 80%. Luciferase assay showed TRAIL-induced $NF-{\kappa}B$ transcriptional activity in both cell lines. Electromobility shift assay demonstrated DNA binding complex of $NF-{\kappa}B$ activated by TRAIL and supershift with p65 antibody. $I{\kappa}B{\alpha}$ degradation was proven by western blot. MG132 completely blocked both TRAIL-induced $NF-{\kappa}B$ dependent luciferase activity and DNA binding of $NF-{\kappa}B$. Conclusion: This results suggest that inhibition of $NF-{\kappa}B$ can be a potentially useful strategy to enhance TRAIL-induced tumor cell killing in lung cancer.