• Title/Summary/Keyword: $\gamma$-ray

Search Result 1,836, Processing Time 0.025 seconds

Development of an efficient method of radiation characteristic analysis using a portable simultaneous measurement system for neutron and gamma-ray

  • Jin, Dong-Sik;Hong, Yong-Ho;Kim, Hui-Gyeong;Kwak, Sang-Soo;Lee, Jae-Geun;Jung, Young-Suk
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.69-81
    • /
    • 2022
  • The method of measuring and classifying the energy category of neutrons directly using raw data acquired through a CZT detector is not satisfactory, in terms of accuracy and efficiency, because of its poor energy resolution and low measurement efficiency. Moreover, this method of measuring and analyzing the characteristics of low-energy or low-activity gamma-ray sources might be not accurate and efficient in the case of neutrons because of various factors, such as the noise of the CZT detector itself and the influence of environmental radiation. We have therefore developed an efficient method of analyzing radiation characteristics using a neutron and gamma-ray analysis algorithm for the rapid and clear identification of the type, energy, and radioactivity of gamma-ray sources as well as the detection and classification of the energy category (fast or thermal neutrons) of neutron sources, employing raw data acquired through a CZT detector. The neutron analysis algorithm is based on the fact that in the energy-spectrum channel of 558.6 keV emitted in the nuclear reaction 113Cd + 1n → 114Cd + in the CZT detector, there is a notable difference in detection information between a CZT detector without a PE modulator and a CZT detector with a PE modulator, but there is no significant difference between the two detectors in other energy-spectrum channels. In addition, the gamma-ray analysis algorithm uses the difference in the detection information of the CZT detector between the unique characteristic energy-spectrum channel of a gamma-ray source and other channels. This efficient method of analyzing radiation characteristics is expected to be useful for the rapid radiation detection and accurate information collection on radiation sources, which are required to minimize radiation damage and manage accidents in national disaster situations, such as large-scale radioactivity leak accidents at nuclear power plants or nuclear material handling facilities.

The Development of Beam Profiling System for the Analysis of Pulsed Gamma-ray Using the Electron Accelerator (전자빔가속기를 이용한 펄스감마선 출력특성 분석용 빔프로파일링 장치개발)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2410-2416
    • /
    • 2016
  • Recently, most countries in the world have pursued a denuclearization. So it has been of interest to increase to Nuclear weapon in such as North Korea's continued nuclear test. Pulsed gamma rays produced in the nuclear explosion and the space environment can give the big damage to the electronic device in a very short period of time. To confirm the extent of damage of these electronic devices, pulsed gamma irradiation facility that can occur in nuclear weapon or space environment are required. In this paper, we implemented the pulsed gamma-ray detection module and analyzed output of the irradiation test. We have experimented using an electron beam accelerator research facilities in Pohang Accelerator similar conditions to equip and Nuclear weapon. As a result, we confirmed that the pulsed gamma rays emitted by the gamma radiation and electron beam conversion device. The results of this paper will contribute to improve the reliability and accuracy of studies for utilizing pulsed gamma rays.

Influence of low dose ${\gamma}$ radiation on the physiology of germinative seed of vegetable crops (저선량 감마선이 채소 발아종자의 생리활성에 미치는 영향)

  • Kim, Jae-Sung;Lee, Eun-Kyung;Back, Myung-Hwa;Kim, Dong-Hee;Lee, Young-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.1
    • /
    • pp.58-61
    • /
    • 2000
  • This study was conducted to determine the effect of low dose ${\gamma}-ray$ on the germination rate and physiology of germinative seeds of welsh onion ( Allicm fistulosum L. cv. Sukchangwoidae ) and spinach ( Spinacia oleracea L. cv. Chungrok ). The germination rate of irradiation group was much higher than that of the control. Especially it was noticeably higher in 1 or 2 Gy irradiation groups in the sowing spinach seeds on paper towel. On the welsh onion, the germination rate of the 1 Gy irradiation group increased by 17% compared to that of the control. Ion leakage from seeds irradiated with low dose of ${\gamma}-ray$ was decreased compared to that from the control especially at the early stage of incubation when examined by means of electric conductance. This tendency was confirmed in seeds of welsh onion and spinach. Starch hydrolysis was stimulated by ${\gamma}-ray$ irradiation in welsh onion. Furthermore ${\gamma}-ray$ irradiation was beneficial to keeping the vitality of seeds as determined through decarboxylation of glutamic acid.

  • PDF

NEW DEVELOPMENT OF HYPERGAM AND ITS TEST OF PERFORMANCE FOR γ-RAY SPECTRUM ANALYSIS

  • Park, B.G.;Choi, H.D.;Park, C.S.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.781-790
    • /
    • 2012
  • The HyperGam program was developed for the analysis of complex HPGe ${\gamma}$-ray spectra. The previous version of HyperGam was mainly limited to the analysis of ${\gamma}$-ray peaks and the manual logging of the result. In this study, it is specifically developed into a tool for the isotopic analysis of spectra. The newly developed features include nuclide identification and activity determination. An algorithm for nuclide identification was developed to identify the peaks in the spectrum by considering the yield, efficiency, energy and peak area for the ${\gamma}$-ray lines emitted from the radionuclide. The detailed performance of nuclide identification and activity determination was accessed using the IAEA 2002 set of test spectra. By analyzing the test spectra, the numbers of radionuclides identified truly (true hit), falsely (false hit) or missed (misses) were counted and compared with the results from the IAEA 2002 tests. The determined activities of the radionuclides were also compared for four test spectra of several samples. The result of the performance test is promising in comparison with those of the well-known software packages for ${\gamma}$-ray spectrum analysis.

In Situ Gamma-ray Spectrometry Using an LaBr3(Ce) Scintillation Detector

  • Ji, Young-Yong;Lim, Taehyung;Lee, Wanno
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.85-96
    • /
    • 2018
  • Background: A variety of inorganic scintillators have been developed and improved for use in radiation detection and measurement, and in situ gamma-ray spectrometry in the environment remains an important area in nuclear safety. In order to verify the feasibility of promising scintillators in an actual environment, a performance test is necessary to identify gamma-ray peaks and calculate the radioactivity from their net count rates in peaks. Materials and Methods: Among commercially available scintillators, $LaBr_3(Ce)$ scintillators have so far shown the highest energy resolution when detecting and identifying gamma-rays. However, the intrinsic background of this scintillator type affects efficient application to the environment with a relatively low count rate. An algorithm to subtract the intrinsic background was consequently developed, and the in situ calibration factor at 1 m above ground level was calculated from Monte Carlo simulation in order to determine the radioactivity from the measured net count rate. Results and Discussion: The radioactivity of six natural radionuclides in the environment was evaluated from in situ gamma-ray spectrometry using an $LaBr_3(Ce)$ detector. The results were then compared with those of a portable high purity Ge (HPGe) detector with in situ object counting system (ISOCS) software at the same sites. In addition, the radioactive cesium in the ground of Jeju Island, South Korea, was determined with the same assumption of the source distribution between measurements using two detectors. Conclusion: Good agreement between both detectors was achieved in the in situ gamma-ray spectrometry of natural as well as artificial radionuclides in the ground. This means that an $LaBr_3(Ce)$ detector can produce reliable and stable results of radioactivity in the ground from the measured energy spectrum of incident gamma-rays at 1 m above the ground.

Exploring the Extra Component in the Gamma-ray Emission of the New Redback Candidate 3FGL J2039.6-5618

  • Ng, Cho-Wing;Cheng, Kwong-Sang;Takata, Jumpei
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • A redback system is a binary system composed of a pulsar and a main sequence star. The inverse Compton (IC) scattering between the stellar soft photons and the relativistic pulsar wind will generate orbital-modulating GeV photons. We look for these IC emissions from redback systems. A multi-wavelength observation of an unassociated gamma-ray source, 3FGL J2039.6-5618, by Salvetti et al. (2015) detected an orbital modulation with a period of 0.2 days in both X-ray and optical cases. They suggested 3FGL J2039.6-5618 to be a new redback candidate. We analyzed the gamma-ray emission of 3FGL J2039.6-5618 using the data from the Fermi large area telescope (Fermi-LAT) and obtained the spectrum in different orbital phases. We propose that the spectrum has orbital dependency and estimate the characteristic energy of the IC emission from the stellar-pulsar wind interaction.

Development of Neutron, Gamma ray, X-ray Radiation Measurement and Integrated Control System (중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템 개발)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.408-411
    • /
    • 2017
  • In this paper, we propose an integrated control system that measures neutrons, gamma ray, and x-ray. The proposed system is able to monitor and control the data measured and analyzed on the remote or network, and can monitor and control the status of each part of the system remotely without remote control. The proposed system consists of a gamma ray/x-ray sensor part, a neutron sensor part, a main control embedded system part, a dedicated display device and GUI part, and a remote UI part. The gamma ray/x-ray sensor part measures gamma ray and x-ray of low level by using NaI(Tl) scintillation detector. The neutron sensor part measures neutrons using Proportional Counter Detector(low-level neutron) and Ion Chamber Type Detector(high-level neutron). The main control embedded system part detects radiation, samples it in seconds, and converts it into radiation dose for accumulated pulse and current values. The dedicated display device and the GUI part output the radiation measurement result and the converted radiation amount and radiation amount measurement value and provide the user with the control condition setting and the calibration function for the detection part. The remote UI unit collects and stores the measured values and transmits them to the remote monitoring system. In order to evaluate the performance of the proposed system, the measurement uncertainty of the neutron detector was measured to less than ${\pm}8.2%$ and the gamma ray and x-ray detector had the uncertainty of less than 7.5%. It was confirmed that the normal operation was not less than ${\pm}15$ percent of the international standard.

Effects of Low Dose Gamma Radiation on the Root Growth of Soybean Cultivars

  • Yoon, Young-Man;Cho, Hyung-In;Chang, Sung-Hee;Kim, Nam-Bum;Kim, Jae-Sung;Kim, Jeong-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.394-400
    • /
    • 2000
  • ${\gamma}-Radiation$ at very low doses frequently has a stimulating or hormetic effect on the growth of organism. Effects of low dose ${\gamma}-ray$ irradiation on the root growth of soybean cultivars were investigated and hormetic effects by environmental conditions were compared with the occurrence of increased economic yield, seeds of cultivars were irradiated with the dose of $0.5{\sim}20Gy$ and cultivated in growth chamber controling temperature, humidity, light, greenhouse and field respectively. To understand hormetic effect on root growth of cultivars and the difference of hormetic effect by cultivation environment, harvested root of soybean cultivars were scanned with image file, and root surface area, root length, root average diameter etc. were examined by WinRhizo program. Also, dry weight of cultivars was examined. Root growth and dry weight of soybean cultivars showed apparently hormetic effect at cultivation of growth chamber condition. In field experiment executed for whole life cycle, yields of pea were not different significantly in each ${\gamma}-ray$ irradiated cultivars but weight of one hundred peas increased in whole ${\gamma}-ray$ irradiated cultivars. Increment of yield was assumed to be induced through shortening of maturing stage caused by ${\gamma}-ray$ hormesis in early growth stage.

  • PDF

Development of Superconducting Transition Edge Sensors for Gamma Ray Detection (감마선 검출을 위한 초전도 상전이 센서)

  • Lee, Young-Hwa;Kim, Yong-Hamb
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.162-166
    • /
    • 2008
  • We are developing a sensitive gamma ray spectrometer based on superconducting transition edge sensors. The detector consists of a small piece of high purity Sn as an absorber and a Ti/Au bilayer as a temperature sensor. It is designed to measure the thermal signal caused by absorption of gamma rays. The mechanical support and the thermal contact between the absorber and the thermometer were made with Stycast epoxy. The bilayer was formed by e-beam evaporation and patterned by wet etching on top of a $SiN_X$ membrane. A sharp superconducting transition of the film was measured near 100 mK. When the film was biased to the edge of the transition, signals were observed due to single photon absorption emitted from an $^{241}Am$ source. The measured spectrum showed several characteristic peaks of the source including 59.5 keV gamma line. The full with at half maximum was about 900 eV for the 59.5 keV gamma line. The background was low enough to resolve low energy lines. Considerations to improve the energy resolution of the gamma ray spectrometer are also discussed.

  • PDF

Toxicity Reduction of Wastewater from a Rubber Products Manufacturing Factory by Gamma-ray Treatment (감마선 처리를 이용한 고무공장 폐수의 생물독성 저감)

  • Park, Eun-Joo;Jo, Hun-Je;Cho, Kijong;Kim, Jeong-Gyu;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.913-918
    • /
    • 2006
  • Both raw wastewater and effluent from a rubber products manufacturing factory were found to be toxic to Daphnia magna though the effluent satisfied current water quality standards. Thus, in order to reduce toxicity, advanced oxidation processes (AOPs) such as gamma-ray (${\gamma}-ray$) treatment and ozonation ($O_3$) were applied. A combined ${\gamma}-rays/O_3$ treatment at 20 kGy after coagulation significantly reduced toxicity of raw wastewater, changing 48-h toxic unit (TU) value from 201.21 to 23.92. However, toxicity of treated water was higher than that of effluent (TU = 12.15). This shows limitation of gamma-ray treatment to remove toxicity of raw wastewater. In case of effluent, the combined ${\gamma}-rays/O_3$ treatment at 20 kGy efficiently decomposed toxic compounds down to non toxic level. This work strongly supports the necessity of toxicity reduction evaluation as well as toxicity-based effluent management.