To analyze the role of the C and D domains in the cyclization activity of cyclodextrin glucanotransferase (CGTase), two plasmids, pKB1ΔC300 and pKB1ΔD96, were constructed in which DNA regions encoding 100 and 32 amino acids, respectively, from the C and D domains of B. stearothermophilus NO2 CGTase were deleted. The mutated CGTase from the pKBlΔC300 produced much lower amounts of ${\alpha}$-, ${\beta}$-, and $\gamma$-cyclodextrin (CD) than the parental CGTase. However, the mutated CGTase from the pKBlΔD96 showed a similar production pattern of CDs to wild-type CGTase. The production ratios of the ${\alpha}$-, ${\beta}$- and $\gamma$-CDs were not affected by the deletions, when compared to those of parental CGTase. The optimum temperature of the mutated CGTase from the pKBlΔC300 was decreased from $60^{\circ}C$ to $55^{\circ}C$. The optimum pH of the mutated CGTase from the pKB1D96 was shifted from 6.0 to 7.0. The thermostability of the two mutant CGTases were not changed. From these results, it is suggested that the C and D domains are not related to cyclization activity directly because mutant-enzymes deleted C or D domains still possessed their activity. However, they are important for other enzymatic properties such as productivity and pH optimum as a partition of CGTase tertiary structure.
The enzymatic properties of purified CGTase from alkalophilic Bacillus sp. YC-335 have been examined. Apparent Vmax values of the enzyme in transferring glycosyl residues ${\alpha}-,\;{\beta}-and\;{\gamma}-cyclodextrin(CD)$ to sucrose were $16.13,\;21.8\;and\;9.8{\mu}moles/min/mg\;protein$, respectively and Km values of the corresponding CD were 1.68, 0.33 and 0.37 mM, respectively. A number of saccharides, specially starch hydrolyzates such as glucose and maltose, could activate the dextrinizing activity of the enzym. However, the dextrinizing activity was inhibited by ${\beta}-CD$. It was found from Lineweaver-Burk plot that the inhibition of CGTase by ${\beta}-CD$ was noncompetitive. High performance liquid chromatographic analysis showed that the enzyme has three kinds of activity ; transglycosylation and disproportionation as well as cyclization.
An Alkalophilic Bacillus circulans that can produce significant amount of cyclodextrin glucanotransferase (CGTase) was newly isolated from soil. The culture filtrate was successively purified by ($NH_4$)$_2$$SO_4$precipitation, DEAE-Sephadex column chromatography, and Sephadex G-100 column chromatography. The enzymatic properties, including molecular weight, optimal pH and temperature, stability, and kinetic parameters, were determined. The cyclodextrin synthesis reaction catalized by the purified CGTase was also studied. The sweet potato and corn starch were found to be the most suitable substrates with 60% conversion to cyclodextrin. The highest conversion was achieved at the CGTase concentration of 900-1,100 units/g of soluble starch. The purified CGTase could also catalize the transglycosylation on stevioside.
Transglycosylation of stevioside in the attrition coupled heterogeneous reaction system using raw starch as a glycosyl donor has significant advantages over conventional reaction systems using liquefied starch as a donor. The transglycosylation of stevioside under the presence of organic solvent showed that transglycosylation reaction occurs via two steps ; initially from raw starch to cyclodextrin(CD), and then followed by transglycosylation of produced CD. Comparison of the transglycosylation efficiency of c$\alpha $-, $\beta $, $\gamma $-CDs indicated that $\alpha $-, $\beta $-CD are mainly utilized as a glycosyl donor for following reaction. The reaction mechanism of transglycosylation between stevioside and CD proceeded according to random sequential bireactant mechanism. The equilibrium constant of transglycosylation reaction of cyclodextrin glucanotransferase wase also evaluated. The structure of transglycosylated stevioside was confirmed by TLC, and it was found that glycosyl group(G$_{1}, $ ~ G$_{4}$-glycosidic bond.
Extracellular cyclodextrin glucanotransferase (CGTase) from Paenibacillus sp. JK-12 was purified through sev-eral purification steps consisting of ammonium sulfate precipitation and chromatographies on DEAE-sephadex A-50 and Mono QIM HR5/5. The purified CGTase exhibited a single band on SDS-PAGE and was estimated to be approximately 82 kDa. The isoelectric point of the enzyme was 7.2 as determined by isoelectric focusing. The CGTase from Paenibacillus sp. JK-12 had a transglucosylation activity at the C-2 position of L-ascorbic acid. The optimum pH and temperature for the CGTase activity were 8.0 and 5$0^{\circ}C$, respectively. The enzyme activity was stable from pH 6.0 to 9.() and at temperatures up to 55$^{\circ}C$ at pB 8.0, having 80% residual activity. The activity of the CGTase was strongly resistant to metals such as A $g^{+}$ and $Ba^{2+}$ but slightly inhibited by H $g^{+}$, N $i^{2+}$ and $Mg^{2+}$. The enzymeproduced $\alpha$ -cyclodextrin ($\alpha$-CD) and $\beta$-CD as the main products from starch, but not ${\gamma}$-CD.X>-CD.
A bacterium producing Cyclodextrin Glucanotransferase (CGTase) and Cyclodextrinase (CDase) was isolated from soil, and named as Bacillus stearothermophilus KJ16. The growth of the isolated strain occurred in two steps, and syntheses of CGTase and CDase were dependedt on the growth cycle of the cell. CGTase was constitutively synthesized during the 1st growing phase, while CDase was synthesized inducibly during the 2nd growing phase. When the midium pH was controlled at 7.0 the maximum enzyme activities of CGTase and CDase were increased by 12-fold (1300 mU/ml) and 2-fold (225 mU/ml), respectively, compared with the pH-uncontrolled batch culture. The CGTase of the isolate converted soluble starch to CDs with the ratio of $\alpha$-CD:$\beta$-CD:$\gamma$-CD=42:46:12 at $55^{\circ}C$.The optimal pH and temperature of CGTase were 6.0 and $60^{\circ}C$, respectively and the optimal pH and temperature of CDase were 6.0 and $55^{\circ}C$. The molecular weights of the purified CGTase and CDase were estimated to be 65, 000 and 68, 000 dalton, respectively. Among several substrates, $\gamma$-CD was most rapidly hydrolyzed by the purified CDase.
An enzyme reactor installed with ultrafiltration membrane was developed to produce ${\alpha}-,\;{\beta}-$, and ${\gamma}$-cyclodextrins (CDs) from soluble starch by Bacillus macerans cyclodextrin glycosyltransferase (CGTase) tagged with 10 lysines at its C-terminus (CGTKIOase). Ultrafiltration membrane YM10 with 10,000 of molecular cutoff was chosen for membrane modification and CD production. A repeated-batch type of the enzyme reaction with free CGTK10ase resulted in a ${\alpha}$-CD yield of 24.0 (${\pm}1.5$)% and a productivity of 4.68 (${\pm}0.88$) g/l-h, which were 7 times higher that those for CGTK10ase immobilized on modified YM10 membrane. Addition of 1-nonanol increased CD yields by 30% relative to the control, which might be due to prevention of the reversible hydrolysis of CDs.
The biosynthesis and catabolite repression of cyclodextrin glucanotransferase(CGTase) and cyclodextrinase(CDase) were studied in Bacillus sp. KJI6. In accompanying to the cell growth, CGTase was synthesized during early growth phase (20h culture) and CDase was synthesized during late growth phase (60h culture). Synthesis of CGTase was rather constitutive than that of CDase in the absence or presence of carbon source. Production of CDase was strongly stimulated by amylopectin and $\gamma$-CD medium (about 6 times), but CGTase synthesis was slightly increased (about 1.3 times). Easily metabolizable carbohydrates such as D-glucose, D- fructose and D-mannose completely repressed the expression of CDase, whereas their repressive effect to CGTase synthesis was relatively negligible. By addition of 10 mM cAMP, any significant effect on the synthesis of the two enzymes was not observed. Hardly metabolizable glucose analogues such as 2-deoxy-D-glucose and 3-0-methyl-D-glucopyranose also did not show any repression on the syntheses of CGTase and CDase. This indicates that D-glucose has to be metabolized to exert its repressive effect. With these results, it seems likely that the biosynthesis of CGTase and CDase are regulated by the catabolite repression due to unknown metabolite(s) of EM pathway.
Chiral separation of arylalcohols such as 1-phenyl-1-propanol, 1-phenyl-2-propanol, and 2-phenyl-1-propanol by capillary electrophoresis was studied using sulfonated $\beta$-cyclodextrin (CD) as a chiral selector and Ag colloids as an additive. The optimum separation condition of arylalcohols was found to be the chiral selector concentration of 6.5 mM, applied voltage of 15 kV, and pH of 7.0. In order to improve chiral separation, an Ag colloid was mixed with a running buffer. The resolution in the Ag colloid-mixed running buffer was considerably superior to that obtained with the sulfonated $\beta$-CD alone. The molar ratio of sulfonated $\beta$-CD to Ag colloid, which is one of critical parameters affecting resolution, was found to be optimum at 65 : 1. In order to elucidate the resolution mechanism, an inclusion-complex of the arylalcohols with sulfonated $\beta$-CD was prepared by mixing and shaking in solution, and then characterized by cyclic voltammetry (CV). The inclusion mechanism was also discussed using experimental results.
Park, Kyo-Sun;Oh, Hyun-Mi;Choe, Hui-Woog;Park, Chung-Ung;Lee, Kang-Min
Biotechnology and Bioprocess Engineering:BBE
/
v.3
no.2
/
pp.78-81
/
1998
Cyclodextrin glucanotransferase [CGTase, E.C.2.4.1.19] is an extracellular enzyme, which catalyzes he formation of ${\alpha}$-, ${\beta}$-, ${\gamma}$- CDs from starch. Their proportions of formations depend on enzyme sources and reaction conditions. To understand what determines the product specificity of CGTases, we examined the alteration of product specificity of CGTase from Bacillus macerans by organic solvent sand pH. At acidic pH range less than pH 6 where the enzyme was unstable, the ratio of ${\alpha}$-/ ${\beta}$-CD production was increased 4 times more than that at neutral pH range. As we increased the concentration of 2-butanol, ${\alpha}$-/ ${\beta}$-CD ratio was proportionally increased but / ratio remained constant. The ${\alpha}$-/ ${\beta}$-CD ratio of products was increased in the reaction media which yielded low products.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.