• Title/Summary/Keyword: $\delta$-integration

Search Result 52, Processing Time 0.024 seconds

Recently Improved Exploration Method for Mineral Discovery (해외광물자원개발을 위한 최적 탐사기법과 동향)

  • Choi, Seon-Gyu;Ahn, Yong-Hwan;Kim, Chang-Seong;Seo, Ji-Eun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.57-65
    • /
    • 2009
  • Selection of good mineralized area is a combination of the integration of all the available geo-scientific (i.e., geological, geochemical, and geophysical) information, extrapolation of likely features from known mineralized terrenes and the ability to be predictive. The time-space relationships of the hydrothermal deposits in the East Asia are closely related to the changing plate motions. Also, two distinctive hydrothermal systems during Mesozoic occurred in Korea: the Jurassic/Early Cretaceous deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary shallow geothermal ones during the Bulguksa event. Both the Mesozoic geothermal system and the mineralization document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The Jurassic mineral deposits were formed at the relatively high temperature and deep-crustal level from the mineralizing fluids characterized by the relatively homogeneous and similar ranges of ${\delta}^{18}O$ values, suggesting that ore-forming fluids were principally derived from spatially associated Jurassic granitoid and related pegmatite. Most of the Jurassic auriferous deposits (ca. 165-145 Ma) show fluid characteristics typical of an orogenic-type gold deposits, and were probably generated in a compressional to transpressional regime caused by an orthogonal to oblique convergence of the Izanagi Plate into the East Asian continental margin. On the other hand, Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of sub-volcanic activity and the distal to transitional condition derived from volcanic environments. However, Cu (-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas polymetallic or precious-metal deposits are more distal to transitional. Strike-slip faults and caldera-related fractures together with sub-volcanic activity are associated with major faults reactivated by a northward (oblique) to northwestward (orthogonal) convergence, and have played an important role in the formation of the Cretaceous Au-Ag lode deposits (ca. 110-45 Ma) under a continental arc setting. The temporal and spatial distinctions between the two typical Mesozoic deposit styles in Korea reflect a different thermal episodes (i.e., late orogenic and post-orogenic) and ore-forming fluids related to different depths of emplacement of magma (i.e., plutonic and sub-volcanic) due to regional changes in tectonic settings.

  • PDF

A Comparative Study on the Electrophysiological Properties of Medial and Lateral Spinoreticular Tract Cells in Cats (고양이의 내측 및 외측 척수망상로 세포의 전기생리학적 비교연구)

  • Lee, Suk-Ho;Jun, Jae-Yeol;Park, Choon-Ok;Goo, Yong-Sook;Kim, Jun;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.181-194
    • /
    • 1990
  • Antidromically activated spinoreticular tract (SRT) cell units in the lumbosacral enlargement of ${\alpha}-chloralose$ anesthetized cats were classified as medial and lateral SRT units according to the location of their axonal termination. Identified SRT units were tested fer antidromic conduction velocity, laterality of their axonal projection, the location in spinal gray, peripheral receptive field, the response pattern to graded mechanichal stimulation and the responsiveness to $A{\delta}$ and C volley of the peripheral nerve. 1) The 59% of 34 medial SRT units were recorded in ipsilateral side to the antidromic stimulation site, but 60% of the 47 lateral SRT units projected to contralateral side. 2) Most of the medial SRT cells and rostral ventrolateral medulla (RVLM)-projecting lateral SRT cells were recorded in lamina VII & VIII. The LRN (lateral reticular nucleus)-projecting SRT cells, however, distributed through all the laminae except superficial ones (I & II). 3) The identified SRT units were classified as low theshold (LT), deep, high threshold (HT), wide dynamic range (WDR) cells, based on the response patterns to graded mechanical stimuli. The proportion of SRT units which receive noxious input was 37.5%, 25% and 75% in the medial, LRN-projecting and RVLM SRT group, respectively. 4) There was no significant difference in the mean conduction velocities between the 3 groups. But the deep cells had significantly higher velocity than that of the HT cells. The above results show that the peripheral inputs to the SRT units are different in the 3 groups: medial, LRN & RVLM SRT group. Especially in case of the SRT cells projecting to RVLM which is a probable candidate fur the integration center of various pressor reflexes such as somatosympathetic reflex, the noxious informations occupy higher proportion of input to them than in other groups. Therefore the noxious information transmitted through the lateral SRT destined for RVLM is expected to play a role in somatosymapthetic reflex.

  • PDF