• Title/Summary/Keyword: $\beta-cyclodextrin$

Search Result 390, Processing Time 0.025 seconds

Crosslinking of $\beta$-Cyclodextrin on Cholesterol Removal from Milk

  • Kim, S.H.;Ahn, J.;Kwak, H.S.
    • Archives of Pharmacal Research
    • /
    • v.27 no.11
    • /
    • pp.1183-1187
    • /
    • 2004
  • This study was designed to develop crosslinking of $\beta$-cyclodextrin ($\beta$-CD), and determine the optimum conditions of different factors (mixing time, mixing temperature, and mixing speed) on cholesterol reduction from milk. Crosslinked $\beta$-CD was prepared with epichlorohydrin. When milk was treated with different conditions, the cholesterol removal rate was in the range of 79.4 to 83.3% with 1 % crosslinked $\beta$-CD addition, which were not significantly different among treatments. After cholesterol removal from milk, the used crosslinked $\beta$-CD was washed for cholesterol dissociation and reused. For recycling study, the cholesterol removal rate in first trial was 81.8%, which was mostly same as that using new crosslinked $\beta$-CD. With five trials repeatedly using the same sample, the mean cholesterol removal rate was 81.2%. The present study indicated that the optimum conditions on cholesterol removal using crosslinked $\beta$-CD were 10 min mixing with 400 rpm speed at $5^{\circ}C$ with about 80% cholesterol removal. In addition, crosslinked $\beta$-CD resulted in the effective recycling efficiency almost 100%.

Purification and Enzymatic Properties of Cyclodextrin Glucanotransferase from Bacillus macerans Cultivated in Wheat-bran Medium (밀기울배지를 이용한 Bacillus macerans의 Cyclodextrin Glucanotransferase 생산과 효소특성)

  • 선우양일;안태진
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.499-505
    • /
    • 1994
  • Bacillus macerans cyclodextrin glucanotransferase(EC 2.4.1.19: 1, 4-${\alpha}$-D(1, 4-${\alpha}$-glucano)-transferase, CGTase) was purified by the technique of starch adsorption and DEAE-cellulose column chromatography. The molecular weight of the enzyme was 67,000, consisting of a subunit. The enzyme converted starch into ${\alpha}$-, ${\beta}$-, and ${\gamma}$-CD in the relative amounts of 1:1.68:0.32, respectively. In the early reaction period, maltohexose was formed mainly by the coupling reaction of ${\alpha}$-CD with D-glucose and then other oligosaccharides. Maltotetrose was formed mainly from ${\alpha}$-CD in the initial stage of hydrolysis of the enzyme and then small amount of other oligosaccharides. Maltotriose was a good substrate for the enzyme and maltosyl or D-glucopyranosyl group can be transfered from this sugar. In this work, D-glutosyl transfer was premiered.

  • PDF

Enhancement of β-cyclodextrin Production and Fabrication of Edible Antimicrobial Films Incorporated with Clove Essential Oil/β-cyclodextrin Inclusion Complex

  • Farahat, Mohamed G.
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.12-23
    • /
    • 2020
  • Edible films containing antimicrobial agents can be used as safe alternatives to preserve food products. Essential oils are well-recognized antimicrobials. However, their low water solubility, volatility and high sensitivity to oxygen and light limit their application in food preservation. These limitations could be overcome by embedding these essential oils in complexed product matrices exploiting the encapsulation efficiency of β-cyclodextrin. This study focused on the maximization of β-cyclodextrin production using cyclodextrin glucanotransferase (CGTase) and the evaluation of its encapsulation efficacy to fabricate edible antimicrobial films. Response surface methodology (RSM) was used to optimize CGTase production by Brevibacillus brevis AMI-2 isolated from mangrove sediments. This enzyme was partially purified using a starch adsorption method and entrapped in calcium alginate. Cyclodextrin produced by the immobilized enzyme was then confirmed using high performance thin layer chromatography, and its encapsulation efficiency was investigated. The clove oil/β-cyclodextrin inclusion complexes were prepared using the coprecipitation method, and incorporated into chitosan films, and subjected to antimicrobial testing. Results revealed that β-cyclodextrin was produced as a major product of the enzymatic reaction. In addition, the incorporation of clove oil/β-cyclodextrin inclusion complexes significantly increased the antimicrobial activity of chitosan films against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella Typhimurium, Escherichia coli, and Candida albicans. In conclusion, B. brevis AMI-2 is a promising source for CGTase to synthesize β-cyclodextrin with considerable encapsulation efficiency. Further, the obtained results suggest that chitosan films containing clove oils encapsulated in β-cyclodextrin could serve as edible antimicrobial food-packaging materials to combat microbial contamination.

Preparation and Bioavailability of Oriental Medicine Containing Baicalin (III) : Preparation of Inclusion Complex and Bioavailability of Coprecipitated Product of Scutellariae Radix and Coptidis Rhizoma (바이칼린 함유 생약의 제제화 및 생체이용률 (제3보) : 황금 및 황련 공침물의 포접화합물 제조 및 생체이용률에 관한 연구)

  • Yang, Jae-Heon;Shin, Sang-Chul;Yoo, Hee-Doo
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.1
    • /
    • pp.29-38
    • /
    • 1997
  • Precipitation was formed during the preparation of decoction from a mixture of Scutellariae Radix and Coptidis Rhizoma. Baicalin and berberine were identified in this coprecipitated product (CPP) and these components were the active ingredients of two herbal medicine. We extracted respectively crude baicalin and berberine in Scutellariae Radix and Coptidis Rhizoma and prepared coprecipitate of crude baicalin-berberine. To increase the stability and bioavailability of coprecipitate of crude baicalin-berberine(CBB), which is slightly soluble drug, its inclusion complex was prepared and studied in this experiment. Inclusion complex of CBB with ${\beta}-cyclodextrin(CBB-{\beta}-CD)$ was prepared by freeze drying method and its characteristics were ascertained by means of solubility test, differential thermal analysis(DTA) and scanning electron microscope(SEM). The type of $CBB-{\beta}-CD$ is classified as $A_L-type$ on phase solubility diagram, and the stoichiometric ratio of CBB(baicalin in CBB) : ${\beta}-CD$ complex is 1:1 and formation constant is 151 $M^-1$. The solubility, dissolution, in situ absorption and serum concentration of $CBB-{\beta}-CD$ were significantly increased when compared to CBB. Therefore enhanced bioavailability of CBB by inclusion complexation with ${\beta}-cyclodextrin$ might be useful for dosage form design of active ingredients of two herbal medicine.

  • PDF

Solubility and Stability of Melatonin in Propylene glycol and 2-hydroxypropyl-${\beta}$-cyclodextrin vehicles

  • Lee, Beom-Jin;Choi, Han-Gon;Kim, Chong-Kook;Parrott, Keith-A.;Ayres, James-W.;Sack, Robert-L.
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.560-565
    • /
    • 1997
  • The physicochemical properties of melatonin (MT) in propylene glycol (PG) and 2-hydroxypropyl-.betha.-cyclodextrin $(2-HP{\beta}CD)$ vehicles were characterized. MT was endothermally decomposed as determined by differential scanning calorimetry (DSC). Melting point and heat of fusion obtained were $116.9{\pm}0.24^{\circ}C $.and $7249{\pm}217 cal/mol$., respectively. MT as received from a manufacture was very pure, at least 99.9%. The solubility of MT in PG solution increased slowly until reaching 40% PG and then steeply increased. Solubility of MT increased linearly as concentration of $2-HP{\beta}CD$ without PG INCREASED$(R^2=0.993)$. MT solubility in the mixtures of pg and $2-HP{\beta}CD$ also increased linearly but was less than the sum of its solubility in $2-HP{\beta}CD$ and PG individually. The MT solubility was low in water, simulated gastric or intestinal fluid but the highest in the mixture of PG(40v/v%) and $2-HP{\beta}CD$ (30w/v%) although efficiency of MT solubilization in $2-HP{\beta}CD$ decreased as the concentration of PG increased. MT was degraded in a fashion of the first order kinetics $(r^2>0.90)$. MT was unstable in strong acidic solution (HCl-NaCl buffer, pH 1.4) but relatively stable in other pH values of 4-10 at $70^{\circ}C$. In HCl-NaCl buffer, MT in 10% PG was more quickly degraded and then slowed dpwm at a higher concentration. However, the degradation rate constant of MT in 2-HP.betha.CD was not changed significantly when compared to the water. The current studies can be applied to the dosage formulations for the purpose of enhancing percutaneous absorption or bioavailability of MT.

  • PDF

Flavor development in cheddar cheese (체다 치즈의 맛의 개발)

  • Jeong, Cheong-Song;Yu, Sang-Hun
    • Proceedings of the Korea Hospitality Industry Research Society Conference
    • /
    • 2003.05a
    • /
    • pp.19-35
    • /
    • 2003
  • This study was carried out to find a cholesterol removal rate, flavor development, and bitter amino acid productions in Cheddar cheese treated with -cyclodextrin (${\beta}-CD$): 1) Control (no homogenization, no ${\beta}--CD$), and 2) Milk treatment (1000 psi milk homogenization, 1% ${\beta}-CD$). The cholesterol removal of the cheese were 79.3%. The production of short-chain free fatty acids (FFA) increased with a ripening time in both control and milk treated cheese. The releasing quantity of short-chain FFA was higher din milk treated cheese than control at 5 and 7 mo ripening. Not much difference was found in neutral volatile compounds production between samples. In bitter-tasted amino acids, milk treatment group produced much higher than control. In sensory analysis, texture score of control Cheddar cheese significantly increased, however, that in cholesterol-reduced cheese decreased dramatically with ripening time.

  • PDF

Studies on Suppositories of $Phenytoin-{\beta}-Cyclodextrin$ Inclusion Complexes (페니토인-${\beta}$-시클로덱스트린 포접 복합체의 좌제에 관한 연구)

  • Cha, Jae-Ho;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 1988
  • An inclusion complex of phenytoin (PT) with ${\beta}-cyclodextrin\;({\beta}-CyD)$ in molar ratio of 1 : 1 was prepared, and the interaction between host and guest molecules was confirmed by infrared spectrometry, differential scanning calorimetry and X-ray diffractometry. Suppositories were prepared by the fusion method. PT and $PT-{\beta}-CyD$ complex were added to PEG 1540 and Witepsol H-15 under the vigorous stirring at $40^{\circ}C$. Content uniformity was tested for different formulations of the PT suppositories. The release rates were dependent on the K.P. V dissolution apparatus and the dialyzing tubing method. Then, the release rates were increased in the following order: $PT-{\beta}-CyD$ complex in PEG 1540>PT in PEG 1540>$PT-{\beta}-CyD$ complex in Witepsol H-15>PT in Witepsol H-15. The area under the curve and maximum blood concentration after rectal administration were increased in the following order: $PT-{\beta}-CyD$ complex in PEG 1540>PT in PEG 1540>$PT-{\beta}-CyD$ complex in Witepsol H-15>PT in Witepsol-15.

  • PDF

Dissolution Enhancements of Tiaprofenic Acid by ${\beta}-Cyclodextrin$ Complexation (${\beta}-Cyclodextrin$과의 복합체 형성에 의한 Tiaprofenic Acid의 용출증가)

  • Chun, In-Koo;Park, In-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.16 no.2
    • /
    • pp.55-67
    • /
    • 1986
  • Inclusion complexation of tiaprofenic acid (TPA) with cyclodextrins $({\alpha}-,\;{\beta}-,\;{\gamma}-CyDs)$ in aqueous solution and in solid phase was investigated by solubility method, measurement of partition coefficient, ultra-violet, circular dichroism, infrared spectroscopies, powder X-ray diffractometry and differential scanning calorimetry. Investigations were made to prepare inclusion complexes of TPA with ${\beta}-CyD$ in solid powdered form by coprecipitation, freeze-drying, spray-drying and co-pulverization methods. The coprecipitation, freeze-drying and spray-drying methods were successful in obtaining inclusion complexes. The results showed that the latter two methods might be originally superior to the former in obtaining powdered inclusion completes. Especially, it was shown by powder X-ray diffractometry that spray-dried ${\beta}-CyD$ alone, TPA-spray-dried ${\beta}-CyD$ physical mixture, and spray-dried $TPA-{\beta}-CyD$ complex were amorphous. The dissolution behaviours of $TPA-{\beta}-CyD$ systems prepared by above four methods were compared with those of TPA alone and $TPA-{\beta}-CyD$ physical mixture, and the rates of dissolution of TPA in pH 1.2 buffer were greatly enhanced by inclusion complexation and copulverization.

  • PDF

Development of Phytosterol Ester-added Cheddar Cheese for Lowering Blood Cholesterol

  • Kwak, H.S.;Ahn, H.J.;Ahn, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.267-276
    • /
    • 2005
  • This study was carried out to investigate the effect of phytosterol ester addition on lowering blood cholesterol in cholesterol-reduced Cheddar cheese. For cholesterol removal, separated cream was treated with 10% ${\beta}$-cyclodextrin at 800 rpm, then blended with remaining skim milk and homogenized with 1,000 psi at $70^{\circ}C$. Experimental cheeses were manufactured by five different levels of phytosterol addition. After the cholesterol reduction process by ;${\beta}$-cyclodextrin, the cholesterol removal rate was in the range of 91.0 to 92.1%. Amount of short-chain free fatty acid and free amino acids increased with an increase of phytosterol ester, and those were significantly different from that of control in all ripening periods. All rheological properties also increased with an increase of phytosterol ester during ripening period. In sensory analysis, the scores of rancid, bitterness Cheddar flavor and off-flavor intensities increased significantly, while texture was decreased during ripening in phytosterol ester-added groups. Total blood cholesterol was reduced by 18% when rats were fed Cheddar cheese treated with 8% phytosterol. The present study indicated that phytosterol ester addition resulted in a profound lowering effect of blood with cholesterol-reduced Cheddar cheese.

Enantioselective Pharmacokinetics of Carvedilol in Human Volunteers

  • Phuong, Nuyen-Thi;Lee, Beam-Jin;Choi, Jung-Kap;Kang, Jong-Seong;Kwon, Kwang-il
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.973-977
    • /
    • 2004
  • Carvedilol is administered as a racemic mixture of the R(+)- and S(-)-enantiomers, although they exhibit different pharmacological effects. To investigate the stereoselective pharmacoki-netics, the enantiomeric separation of carvedilol in human plasma was undertaken using capil-lary electrophoresis (CE). Resolution of the enantiomers was achieved using 2-hydoxypropyl-$\beta$-cyclodextrin as the chiral selector. Phosphate buffer (50 mM, pH 4.0) containing 10 mM of 2-hydoxypropropyl-$\beta$-cyclodextrin was used as electrolytic buffer. Achiral separation was carried out with the same electrolytic buffer without chiral selector. Following a single oral administra-tion of 25-mg carvedilol to 11 healthy, male volunteers, stereoselective pharmacokinetic analy-sis was undertaken. The maximum plasma concentrations ( $C_{max}$) were 48.9 and 21.6 ng/mL for (R)-carvedilol and (S)-carvedilol, respectively, determined by the chiral method. The profiles of the plasma concentration of (RS)-carvedilol showed $C_{max}$ of 71.5, 72.2, and 73.5 ng/mL, as determined by the CE, HPLC/FD methods and calculations from the data of the chiral method, respectively.y.y.