• Title/Summary/Keyword: $\beta-agarase$

Search Result 53, Processing Time 0.024 seconds

Isolation of Agarivorans sp. JS-1 and Characterization of Its β-Agarase (한천분해세균 Agarivorans sp. JS-1의 분리 및 β-아가라제의 특성 규명)

  • Jin Sun Kim;Dong-Geun Lee;Go-Wun Yeo;Min-Joo Park;Sang-Hyeon Lee
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.357-362
    • /
    • 2023
  • This report looks at an agar-degrading marine bacterium and characterization of its agarase. Agar-degrading marine bacterium JS-1 was isolated with Marine agar 2216 media from seawater from the seashore of Sojuk-do, Changwon in Gyeongnam Province, Korea. The agar-degrading bacterium was named as Agarivorans sp. JS-1 by phylogenetic analysis based on 16S rRNA gene sequencing. The extracellular agarase was prepared from the culture media of Agarivorans sp. JS-1 and used for characterization. Relative activities at 20℃, 30℃, 35℃, 40℃, 45℃, 50℃, 55℃, and 60℃ were 70%, 74%, 78%, 83%, 87%, 100%, 74%, and 66%, respectively. Relative activities at pH 5, 6, 7, and 8 were 91%, 100%, 90%, and 89%, respectively. Its extracellular agarase showed maximum activity (207 units/l) at pH 6.0 and 50℃ in 20 mM Tris-HCl buffer. The residual activity after heat treatment at 20℃, 30℃, and 50℃ for 30 minutes was 90%, 70%, and 50% or more, respectively. After a 2-hour heat treatment at 20℃, 30℃, 35℃, 40℃, and 45℃, the residual activity was 80%, 68%, 65%, 63%, and 57%, respectively. At 50℃ and above, after heat treatment for 30 minutes, the residual activity was below 60%. Thin layer chromatography analysis suggested that Agarivorans sp. JS-1 produces extracellular β-agarases as they hydrolyze agarose to produce neoagarooligosaccharides such as neoagarohexaose (20.6%), neoagarotetraose (58.5%), and neoagarobiose (20.9%). Agarivorans sp. JS-1 and its thermotolerant β-agarase would be useful in the production of neoagarooligosaccharides, showing functional activity such as inhibition of bacterial growth and delay of starch degradation.

Characterization of Exolytic GH50A β-Agarase and GH117A α-NABH Involved in Agarose Saccharification of Cellvibrio sp. KY-GH-1 and Possible Application to Mass Production of NA2 and L-AHG (Cellvibrio sp. KY-GH-1의 아가로오스 당화 관련 엑소형 GH50A β-아가레이즈와 GH117A α-NABH의 특성 및 NA2와 L-AHG 양산에의 적용 가능성)

  • Jang, Won Young;Lee, Hee Kyoung;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.356-365
    • /
    • 2021
  • Recently, we sequenced the entire genome of a freshwater agar-degrading bacterium Cellvibrio sp. KY-GH-1 (KCTC13629BP) to explore genetic information encoding agarases that hydrolyze agarose into monomers 3,6-anhydro-L-galactose (L-AHG) and D-galactose. The KY-GH-1 strain appeared to possess nine β-agarase genes and two α-neoagarobiose hydrolase (α-NABH) genes in a 77-kb agarase gene cluster. Based on these genetic information, the KY-GH-1 strain-caused agarose degradation into L-AHG and D-galactose was predicted to be initiated by both endolytic GH16 and GH86 β-agarases to generate NAOS (NA4/NA6/NA8), and further processed by exolytic GH50 β-agarases to generate NA2, and then terminated by GH117 α-NABHs which degrade NA2 into L-AHG and D-galactose. More recently, by employing E. coli expression system with pET-30a vector we obtained three recombinant His-tagged GH50 family β-agarases (GH50A, GH50B, and GH50C) derived from Cellvibrio sp. KY-GH-1 to compare their enzymatic properties. GH50A β-agarase turned out to have the highest exolytic β-agarase activity among the three GH50 isozymes, catalyzing efficient NA2 production from the substrate (agarose, NAOS or AOS). Additionally, we determined that GH117A α-NABH, but not GH117B α-NABH, could potently degrade NA2 into L-AHG and D-galactose. Sequentially, we examined the enzymatic characteristics of GH50A β-agarase and GH117A α-NABH, and assessed their efficiency for NA2 production from agarose and for production of L-AHG and D-galactose from NA2, respectively. In this review, we describe the benefits of recombinant GH50A β-agarase and GH117A α-NABH originated from Cellvibrio sp. KY-GH-1, which may be useful for the enzymatic hydrolysis of agarose for mass production of L-AHG and D-galactose.

Isolation and Characterization of a Marine Bacterium Producing Thermotolerant Agarase (내열성 한천분해효소를 생산하는 해양세균의 분리 및 특성)

  • Park Ceun-Tae;Lee Dong-Ceun;Kim Nam Young;Lee Eo-Jin;Jung Jong-Ceun;Lee Jae-Hwa;Heo Moon-Soo;Lee Jung-Hyun;Kim Sang-Jin;Lee Sang-Hyeon
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.884-888
    • /
    • 2005
  • An agar-degrading bacterium was isolated from north-eastern sea of Jeju island and cultured in marine agar 2216 media. Biochemical and morphologicl characteristics and 165 rRNA gene revealed that isolated strain was member of Agarivorans genus, and named Agarivorans sp. JA-1. Agarase was produced as growth-related and expressed regardless of agar presence. Optimal pH was 8 at 50 mM Clycine-NaOH buffer, and activity was maximum at $40^{\circ}C$E Enzymatic activity was maintained over $80\%$ at $60^{\circ}C$t and $70\%$ at $80^{\circ}C$ which is thermotolerant. Hence isolated novel Agarivorans sp. JA-1 strain and its beta-agarase could be used for the production of functional oligosaccharide from agar in solution state.

Purification and Characterization of Neoagarotetraose from Hydrolyzed Agar

  • Jang, Min-Kyung;Lee, Dong-Guen;Kim, Nam-Young;Yu, Ki-Hwan;Jang, Hye-Ji;Lee, Seung-Woo;Jang, Hyo-Jung;Lee, Ye-Ji;Lee, Sang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1197-1200
    • /
    • 2009
  • The whitening effect, tyrosinase inhibition, and cytotoxicity of neoagarotetraose were measured after its purification from hydrolyzed agar by gel filtration chromatography. In melanoma B16F10 cells, the melanin content of neoagarotetraose-treated cells was the same as that treated by kojic acid or arbutin. In addition, tyrosinase of melanoma cells was strongly inhibited by neoagarotetraose at a concentration of $1{\mu}g/ml$ and similarly inhibited at 10 and $100{\mu}g/ml$ compared with those by arbutin or kojic acid. The activity of mushroom tyrosinase showed a 38% inhibition by neoagarotetraose at $1{\mu}g/ml$, and this inhibitory effect was more efficient than that by kojic acid. Neoagarotetraose revealed a similar $IC_{50}$ (50% inhibition concentration) value for mushroom tyrosinase as that by kojic acid. These data suggest that the neoagarotetraose generated from agar by recombinant $\beta$-agarase might be a good candidate as a cosmetic additive for the whitening effect.

Chemical Composition and Rheological Properties of Enzymatic Hydrolysate of Porphyran Isolated from Pyropia yezoensis (김(Pyropia yezoensis)에서 분리한 포피란 효소가수분해물의 화학적 및 유동 특성)

  • In, Seo-Kyoung;Koo, Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.58-63
    • /
    • 2015
  • The chemical and rheological properties of natural and enzymatically hydrolyzed porphyran isolated from Pyropia yezoensis were investigated. The enzymatic hydrolysate was prepared by hydrolysis of porphyran using ${\beta}$-agarase followed by fractionation based on molecular weight (>300 kDa (Fr-1), 100-300 kDa (Fr-2), 10-100 kDa (Fr-3) and 1-10 kDa (Fr-4) using an ultrafiltration membrane. Each hydrolysate fraction consisted mainly of galactose (42.7-57.5%), 3,6-anhydro galactose (6.5-15.1%) and ester sulfate (8.6-14.1%). The sulfate content of the enzymatically hydrolyzed fractions decreased with an increase in molecular weight, whereas the 3,6-anhydro galactose content increased significantly. The rheological behavior of porphyran and enzymatically hydrolyzed porphyran solutions demonstrated a pseudoplastic behavior, which agrees with the Herschel-Bulkley model. The effect of temperature on the viscosity of the porphyrans and hydolysate fractions were measured and modeled using the Arrhenius equation. The activation energy of the porphyrans and enzymatically hydrolyzed porphyran (Fr-1) increased from 12.30 to 20.29 kJ/mol and 9.06 to 23.84 kJ/mol, respectively with increasing concentrations from 3% to 7%. These data indicate that the extent of the apparent viscosity of porphyran and enzymatically hydrolyzed porphyran are influenced by both temperature and concentration.

Production of Ethanol from Agarose by Unified Enzymatic Saccharification and Fermentation in Recombinant Yeast

  • Lee, Ji-Soo;Hong, Soon-Kwang;Lee, Chang-Ro;Nam, Soo-Wan;Jeon, Sung-Jong;Kim, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.625-632
    • /
    • 2019
  • The unified saccharification and fermentation (USF) system was developed for direct production of ethanol from agarose. This system contains an enzymatic saccharification process that uses three types of agarases and a fermentation process by recombinant yeast. The $pGMF{\alpha}-HGN$ plasmid harboring AGAH71 and AGAG1 genes encoding ${\beta}-agarase$ and the NABH558 gene encoding neoagarobiose hydrolase was constructed and transformed into the Saccharomyces cerevisiae 2805 strain. Three secretory agarases were produced by introducing an S. cerevisiae signal sequence, and they efficiently degraded agarose to galactose, 3,6-anhydro-L-galactose (AHG), neoagarobiose, and neoagarohexose. To directly produce ethanol from agarose, the S. cerevisiae $2805/pGMF{\alpha}-HGN$ strain was cultivated into YP-containing agarose medium at $40^{\circ}C$ for 48 h (for saccharification) and then $30^{\circ}C$ for 72 h (for fermentation). During the united cultivation process for 120 h, a maximum of 1.97 g/l ethanol from 10 g/l agarose was produced. This is the first report on a single process containing enzymatic saccharification and fermentation for direct production of ethanol without chemical liquefaction (pretreatment) of agarose.