• Title/Summary/Keyword: $\beta-agarase$

Search Result 53, Processing Time 0.019 seconds

High-level Secretory Expression of Recombinant $\beta$-Agarase from Zobellia galactanivorans in Pichia pastoris (Pichia pastoris에서 Zobellia galactanivorans 유래 재조합 $\beta$-Agarase의 고효율 분비생산)

  • Seok, Ji-Hwan;Park, Hee-Gyun;Lee, Sang-Hyeon;Nam, Soo-Wan;Jeon, Sung-Jong;Kim, Jong-Hyun;Kim, Yeon-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.40-45
    • /
    • 2010
  • The gene encoding $\beta$-agarase (agaB) which hydrolyzes $\beta$-1,4 linkages of agarose from Zobellia galactanivorans was cloned and fused to Saccharomyces cerevisiae mating factor alpha-1 secretion signal ($MF{\alpha}1$), in which the transcription of $MF{\alpha}1$-AgaB was under the control of AOX1 (alcohol oxidase 1, methanol inducible) promoter. The constructed plasmid pPIC-AgaB (9 kb) was integrated into HIS4 gene locus of Pichia pastoris genome. Successful integration was confirmed by performing colony PCR. The transformed cells showed red halos around its colonies in methanol agar plate by adding iodine solution, indicating the active expression of agaB in P.pastoris. By SDS-PAGE and zymographic analysis, the molecular weight of $\beta$-agarase was estimated to be a 53 kDa and about 15% N-linked glycosylation was occurred. The activity of extracellular $\beta$-agarase reached 1.34, 1.42 and 1.53 units/mL by inducing 0.1, 0.5, and 1% methanol, respectively, at baffled flask culture of P.pastoris GS115/pPIC-AgaB for 48 hr. Most of the enzyme activity was found in the extacellular fraction and the secretion efficiency showed 98%. Thermostability of recombinant $\beta$-agarase was also increased by glycosylation.

Expression of \beta-agarase Gene and Carabolite Repression in Escherichia coli by the Promoter of Alginate Lyase Gene Isolated from Marine Pseudomonas sp. (해양의 Pseudomonas sp. 로부터 분리한 alginate lyase 유전자의 promoter에 의한 대장균 내에서의 \beta-agarase 유전자의 발현과 catabolite repression의 변화)

  • 공인수;박제현;한정현;최윤혁;이종희;진철호;이정기
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.72-77
    • /
    • 2001
  • Expression of f3 ~agarase Gene and Catabolite Repression in Escherichia coli by the Promoter of Alginate Lyase Gene Isolated from Marine Pseudomonas sp. Jin, Cheal~Ho, J~Hyeon Park, Jeong-Hyun Han, YoonM Hyeok Chae, Jong~Hee Lee, Jung-Kee Lee!, and In-800 Kong*. Faculty of Food Science and Biotechnology, Pukyong National UniversitYt Pusan 608-737, Korea, llnBioNet Co. 1690-3 Taejon 306-230, Korea - Promoter is a key factor for expression of the recombinant protein. There are many promoters for overexpression of protein in various organisms. The aly promoter of Pseudomonas sp. W7 isolated from marine environment was known to be a constitutive expression promoter of the alginate lyase gene, and it's promoter activity is repressed by glucose in Escherichia coli. To investigate the catabolite repression of the aly promoter ~md association between the promoter mutants, f3 agarase gene, which was also cloned from Pseudomonas sp. W7 was connected to the aly promoter with the sequence the coding 46 N-terminal amino acids ofthe alginate lyase gene. The constructed plasmid was introduced into E. coli and the agarase activity was measured. Fourty six amino acids of the alginate lyase gene was serially deleted using peR to the direction of 5' upstream region and subcloned. The agarase was overexpressed by the aly promoter and the production of agarase was repressed by the addition of glucose into culture media. Fourty six amino acids of alginate lyase did not affect the production of agarase at all. The deletion of a putative stem-loop structure in the aly promoter induced the decrease of f3 -agarase productivity.

  • PDF

Development of a thermo-stabel ${\beta}-agarase$ from marine organism

  • Lee, Sang-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.31-32
    • /
    • 2005
  • Neoagaro-oligosaccharides are produced only by enzymatic degradation of agarose by ${\beta}-agarase.^{1)}$ Neoagaro-oligosaccharides inhibit the growth of bacteria, slow the rate of degradation of starch, are used as low-calorie additives to improve food quality, and have macrophage-stimulating activity. Furthermore, neoagarobiose is a rare reagent that has both moisturizing effect on skin and whitening effect on melanoma $cells.^{2)}$ An agar-degrading marine bacterium was isolated from the sea water at the northeast coast in Cheju island, Korea. The strain was gram negative, aerobic, and motile rod. The 16S rRNA of the strain had the closest match of 98% homology, with that from Agarivorans albus. On the basis of several phenotypic characters and a phylogenetic analysis, this strain was designated Agarivorans sp. JA-1. In solid agar plate, Agarivorans sp. JA-1 produced a diffusible agarase that caused agar softening around the colonies. Agarivorans sp. JA-1 was cultured for 36 hr in marine broth 2216 (Difco, USA) and the supernatant that containing an extracellular ${\beta}-agarase$ was prepared by centrifugation of culture media. The enzyme exhibited relatively strong activity at $40^{\circ}C$ and was stable up to $60^{\circ}C$. Using PCR primers derived from the ${\beta}-agarase$ gene of Vibrio sp., the gene encoding ${\beta}-agarase$ from Agarivorans sp. JA-1 was cloned and sequenced. The structural gene consists of 2931 bp encoding 976 amino acids with a predicted molecular weight of 107,360 Da. The deduced amino acid sequence showed 99% and 34% homology to $agaA^{2)}$ and $agaB^{2)}$ genes for ${\beta}-agarase$ from Vibrio sp., respectively. The expression plasmid for ${\beta}-agarase$ gene of Agarivorans sp. JA-1 is being constructed and the recombinant enzyme will be biochemically characterized.

  • PDF

Secretory Overexpression of β-Agarase in Bacillus subtilis and Antibacterial Activity of Enzymatic Products (Bacillus subtilis에서 β-agarase의 분비형 과발현 및 효소분해산물의 항균활성)

  • Jang, Min-Kyung;Lee, Ok-Hee;Yoo, Ki-Hwan;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1601-1604
    • /
    • 2007
  • The gene for ${\beta}-agarase$ of an Agarivorans sp. JA-1 was expressed in Bacillus subtilis DB104, 168 and ISW1214 strains for mass-production. Among 3 host strains, B. subtilis ISW1214 secreted the highest amount of recombinant ${\beta}-agarase$ with a specific activity of 201 U/mg and 360 mg of protein into culture broth. This was approximately 130-fold higher than the production in E. coli as an expression host. Recombinant enzyme produced neoagarooligosaccharides such as neoagarohexaose, neoagarotetraose, and neoagarobiose from agar. Produced neoagarooligosaccharides showed antibacterial activities against gram-negative E. coli and gram-positive B. subtilis at a concentration of 1.5%. These data suggest that neoagarooligosaccharides could be an useful preservative for food industry.

Molecular Cloning, Overexpression, and Enzymatic Characterization of Glycosyl Hydrolase Family 16 ${\beta}$-Agarase from Marine Bacterium Saccharophagus sp. AG21 in Escherichia coli

  • Lee, Youngdeuk;Oh, Chulhong;Zoysa, Mahanama De;Kim, Hyowon;Wickramaarachchi, Wickramaarachchige Don Niroshana;Whang, Ilson;Kang, Do-Hyung;Lee, Jehee
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.913-922
    • /
    • 2013
  • An agar-degrading bacterium was isolated from red seaweed (Gelidium amansii) on a natural seawater agar plate, and identified as Saccharophagus sp. AG21. The ${\beta}$-agarase gene from Saccharophagus sp. AG21 (agy1) was screened by long and accurate (LA)-PCR. The predicted sequence has a 1,908 bp open reading frame encoding 636 amino acids (aa), and includes a glycosyl hydrolase family 16 (GH16) ${\beta}$-agarase module and two carbohydrate binding modules of family 6 (CBM6). The deduced aa sequence showed 93.7% and 84.9% similarity to ${\beta}$-agarase of Saccharophagus degradans and Microbulbifer agarilyticus, respectively. The mature agy1 was cloned and overexpressed as a His-tagged recombinant ${\beta}$-agarase (rAgy1) in Escherichia coli, and had a predicted molecular mass of 69 kDa and an isoelectric point of 4.5. rAgy1 showed optimum activity at $55^{\circ}C$ and pH 7.6, and had a specific activity of 85 U/mg. The rAgy1 activity was enhanced by $FeSO_4$ (40%), KCl (34%), and NaCl (34%), compared with the control. The newly identified rAgy1 is a ${\beta}$-agarase, which acts to degrade agarose to neoagarotetraose (NA4) and neoagarohexaose (NA6) and may be useful for applications in the cosmetics, food, bioethanol, and reagent industries.

Bacillus cereus ASK-202에서 cloning 된 agarase의 물리 ${\cdot}$ 화학적 특성

  • Hwang, Seon-Hui;Ha, Sun-Deuk;Kim, Bong-Jo;Gong, Jae-Yeol
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.534-537
    • /
    • 2002
  • An agarase gene from Bacillus cereus ASK202 was expressed in high levels by E. coli BL21(DE3)/pEBA1 using pET28a(+) vector system with the inducible T7 promoter in the presence of isopropyl- ${\beta}$ -thiogalactopyranoside. The open reading frame encodes 761 amino acid residues with a calculated molecular weight of 83,300 daltons and a potential signal peptide about 36 amino acid residues at the N-terminus. E. coli BL21(DE3)/pEBA1 produce 1280 unit/ ${\ell}$ of agarase. The optimum physical condition for the agarase activity was pH 5.6, and $40^{\circ}C$, respectively. The agarase activity was stable up pH $4.0{\sim}9.0$ and $4{\sim}40^{\circ}C$. The km and maximum rate of metabolism for agar were 0.068mg/$m{\ell}$ and 0.094mg/$m{\ell}{\cdot}min$, respectively.

  • PDF

Cloning, Expression, and Characterization of a Glycoside Hydrolase Family 118 ${\beta}$-Agarase from Agarivorans sp. JA-1

  • Lee, Dong-Geun;Jeon, Myong Je;Lee, Sang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1692-1697
    • /
    • 2012
  • We report a glycoside hydrolase (GH)-118 ${\beta}$-agarase from a strain of Agarivorans, in which we previously reported recombinant expression and characterization of the GH-50 ${\beta}$-agarase. The GH comprised an open reading frame of 1,437 base pairs, which encoded a protein of 52,580 daltons consisting of 478 amino acid residues. Assessment of the entire sequence showed that the enzyme had 97% nucleotide and 99% amino acid sequence similarities to those of GH-118 ${\beta}$-agarase from Pseudoalteromonas sp. CY24, which belongs to a different order within the same class. The gene corresponding to a mature protein of 440 amino acids was inserted, recombinantly expressed in Escherichia coli, and purified to homogeneity with affinity chromatography. It had maximal activity at $35^{\circ}C$ and pH 7.0 and had 208.1 units/mg in the presence of 300 mM NaCl and 1 mM $CaCl_2$. More than 80% activity was maintained after 2 h exposure to $35^{\circ}C$; however, < 40% activity remained at $45^{\circ}C$. The enzyme hydrolyzed agarose to yield neoagarooctaose as the main product. This enzyme could be useful for industrial production of functional neoagarooligosaccharides.

Isolation of a Novel Freshwater Agarolytic Cellvibrio sp. KY-YJ-3 and Characterization of Its Extracellular ${\beta}$-Agarase

  • Rhee, Young-Joon;Han, Cho-Rong;Kim, Won-Chan;Jun, Do-Youn;Rhee, In-Ku;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1378-1385
    • /
    • 2010
  • A novel agarolytic bacterium, KY-YJ-3, producing extracellular agarase, was isolated from the freshwater sediment of the Sincheon River in Daegu, Korea. On the basis of Gram-staining data, morphology, and phylogenetic analysis of the 16S rDNA sequence, the isolate was identified as Cellvibrio sp. By ammonium sulfate precipitation followed by Toyopearl QAE-550C, Toyopearl HW-55F, and MonoQ column chromatographies, the extracellular agarase in the culture fluid could be purified 120.2-fold with a yield of 8.1%. The specific activity of the purified agarase was 84.2 U/mg. The molecular mass of the purified agarase was 70 kDa as determined by dodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal temperature and pH of the purified agarase were $35^{\circ}C$ and pH 7.0, respectively. The purified agarase failed to hydrolyze the other polysaccharide substrates, including carboxymethyl-cellulose, dextran, soluble starch, pectin, and polygalacturonic acid. Kinetic analysis of the agarose hydrolysis catalyzed by the purified agarase using thin-layer chromatography showed that the main products were neoagarobiose, neoagarotetraose, and neoagarohexaose. These results demonstrated that the newly isolated freshwater agarolytic bacterium KY-YJ-3 was a Cellvibrio sp., and could produce an extracellular ${\beta}$-agarase, which hydrolyzed agarose to yield neoagarobiose, neoagarotetraose, and neoagarohexaose as the main products.

Biochemical Characterization of a Novel GH86 β-Agarase Producing Neoagarohexaose from Gayadomonas joobiniege G7

  • Lee, Yeong Rim;Jung, Subin;Chi, Won-Jae;Bae, Chang-Hwan;Jeong, Byeong-Chul;Hong, Soon-Kwang;Lee, Chang-Ro
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.284-292
    • /
    • 2018
  • A novel ${\beta}$-agarase, AgaJ5, was identified from an agar-degrading marine bacterium, Gayadomonas joobiniege G7. It belongs to the glycoside hydrolase family 86 and is composed of 805 amino acids with a 30-amino-acid signal peptide. Zymogram analysis showed that purified AgaJ5 has agarase activity. The optimum temperature and pH for AgaJ5 activity were determined to be $30^{\circ}C$ and 4.5, respectively. AgaJ5 was an acidic ${\beta}$-agarase that had strong activity at a narrow pH range of 4.5-5.5, and was a cold-adapted enzyme, retaining 40% of enzymatic activity at $10^{\circ}C$. AgaJ5 required monovalent ions such as $Na^+$ and $K^+$ for its maximum activity, but its activity was severely inhibited by several metal ions. The $K_m$ and $V_{max}$ of AgaJ5 for agarose were 8.9 mg/ml and 188.6 U/mg, respectively. Notably, thin-layer chromatography, mass spectrometry, and agarose-liquefication analyses revealed that AgaJ5 was an endo-type ${\beta}$-agarase producing neoagarohexaose as the final main product of agarose hydrolysis. Therefore, these results suggest that AgaJ5 from G. joobiniege G7 is a novel endo-type neoagarohexaose-producing ${\beta}$-agarase having specific biochemical features that may be useful for industrial applications.

The Classification, Origin, Collection, Determination of Activity, Purification, Production, and Application of Agarases (Agarase의 분류, 기원, 확보, 활성파악, 분리정제, 생산 및 응용)

  • Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.266-280
    • /
    • 2012
  • Agar is a cell wall component of macro red algae that can be hydrolyzed by agarase. Agarases are classified into ${\alpha}$-agarase (E.C. 3.2.1.158) and ${\beta}$-agarase (E.C. 3.2.1.81), in accordance with their cleavage pattern, and can be grouped in the glycoside hydrolase (GH)-16, -58, -86, -96, and -118 family according to the amino acid sequences of the proteins. Many agarases and/or their genes have been detected, isolated, and recombinantly expressed from bacteria, and metagenomes have their origins in sea and terrestrial environments. Products of agarases, agarooligosaccharides and neoagarooligosaccharides, represent wide functions such as antitumor, immune stimulation, antioxidation, prebiotic, hepa-protective, antibacterial, whitening, and moisturizing effects; hence, broad applications would be possible in the food industry, cosmetics, and medical fields. In addition, agarases are also used as a tool enzyme for research. This paper reviews the sources, purifications and detection methods, and application fields of agarases. The role of agarases in agar metabolism and the function of their enzymatic products are also surveyed.