• 제목/요약/키워드: $\beta-Ti$ 합금

검색결과 95건 처리시간 0.025초

Ti-6Al-4V 합금의 가스질화와 고온산화 (Gas nitriding and high temperature oxidation of Ti-6Al-4V alloys)

  • 김슬기;봉성준;김민정;이동복
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.176-176
    • /
    • 2012
  • ${\alpha}$-Ti상과 ${\beta}$-Ti상 등으로 미세조직이 제어된 Ti-6Al-4V합금을동안 1 Pa의 질소기체내에서 $850^{\circ}C$로 1시간 ~ 12시간 질화 처리하였다. 질화 시간이 증가함에 따라 Ti-N의 층은 두꺼워 졌으며 N이 용해된 ${\alpha}$-Tidiffusion zone은 더 넓어졌다. Ti-N층에서 처음 생성된 $Ti_2N$은 질화됨에 따라 TiN이 되었다. 대기 중에서 $700^{\circ}C$로 10시간 동안 산화시킨 질화층은rutile-$TiO_2$가 되었다.

  • PDF

양극산화와 석회화 순환처리에 의해서 개선된 Ti-32Nb-5Zr 합금의 생체활성도 (Bioactivity of Ti-32Nb-5Zr Alloy Modified by Anodic Oxidation and Cyclic Precalcification Treatments)

  • 이유리;;박정은;김서영;박일송;이민호;배태성
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.215-215
    • /
    • 2013
  • 임플란트 소재로서 순 타이타늄은 높은 응력이 발생하는 부위에는 그 강도가 충분하지 않은 것으로 지적되었으며, 이러한 이유로 인해서 그의 대용합금에 대한 연구가 진행되고 있다. 본 연구에서 ${\beta}$형 타이타늄 합금 Ti-32Nb-5Zr 합금을 시험재료로 선택한 다음 양극산화와 석회화 순환처리에 의해서 표면을 개질한 결과, HAp 석출이 빠르게 가속되었을 뿐만 아니라 신생골 생성량과 골결합력이 크게 개선된 결과를 보여주었다.

  • PDF

Ti-6Al-4V 합금의 미세구조 분석 (Microstructure of Ti-6Al-4V alloy)

  • 김태완;윤요한;오호라;박종범;이정일;류정호
    • 한국결정성장학회지
    • /
    • 제26권3호
    • /
    • pp.126-130
    • /
    • 2016
  • Ti-합금은 낮은 밀도, 낮은 탄성계수, 우수한 고온강도, 내산화성 및 인체적합성으로 자동차와 항공산업 및 바이오 산업에서 구조용 재료로 널리 연구되고 있다. 본 연구에서는 Ti-합금 중 대표적인 조성인 Ti-64(6 wt% Al, 4 wt% V) 합금에 대한 결정학적 특성과 미세조직에 대해서 알아보고자 하였다. XRD 분석을 통하여 Ti-64 샘플의 주요 결정상을 분석하였고, FE-SEM 및 EDX 분석을 통하여 Ti-64 합금 샘플의 미세구조를 화학조성의 차이에 의해 고찰하였다.

Ti-Nb계 합금의 상변화가 기계적 성질에 미치는 영향 (Effects of phase changes on mechanical properties of Ti-Nb alloys)

  • 박효병
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.9-17
    • /
    • 2005
  • The use of titanium alloys as biomaterials is increasing due to their superior biocompatibility and enhanced corrosion resistance compared to conventional stainless steels and cobalt-based alloys. Ti-6Al-4V ($\alpha+\beta$type) alloy instead of pure titanium ($\alpha$type) is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength and corrosion resistance. But it has been reported recently that the vanadium element expresses cytotoxicity and the aluminium element is related with dementia of Alzheimer type and neurotoxicity. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study. This paper was described the influence of phase changes of Ti-Nb alloys on mechanical properties. Ti-3wt.%Nb($\alpha$type),Ti-20wt.%Nb($\alpha+\beta$type) and Ti-40wt.%Nb($\beta$type) alloys were melted by vacuum arc furnace. The specimens were homogenized at 1050$^{\circ}C$ for 24hr and were then hot rolled to 50% reduction. Each alloys were solution heat treated at $\beta$ zone and $\alpha+\beta$ zone after homogenization and then were aged. The mechanical properties of Ti alloys were analysed by hardness test, tensile test, elongation test and SEM test. The results can be summarized as follows: 1) The higher hardness value of $\alpha+\beta$type alloy was obtained compared to the, $\alpha,\beta$type alloys. 2) The aged treated showed better hardness compared to the solution heat treated, homogenized. 3) In the case of solution and aging treatment at $\beta$region, the $\alpha+\beta$type alloy showed the most highest tensile strength and $\beta$type alloy showed the best elongation.

  • PDF

열간압연에 의한 Ti-Nb계 합금의 미세조직 및 내식성에 대한 연구 (A study on microstruture and corrosion resistance of Ti-Nb alloys by hot rolling)

  • 박효병
    • 대한치과기공학회지
    • /
    • 제23권2호
    • /
    • pp.223-230
    • /
    • 2002
  • Pure titanium and Ti6Al4V alloy have been mainly used as implant materials but the cytotoxicity of V, neurotoxicity of Al resulting in Alzheimer disease had been reported. This paper was described the influence of composition of Ti-Nb alloys with 3 wt%Nb, 20 wt%Nb on the microstructure and corrosion resistance. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at $1000^{\circ}C$ for 24hr. The alloys were rolled in $\beta$ and ${\alpha}+{\beta}$ regions. The corrosion resistance of Ti alloys were evaluated by potentiodymic polarization test in 0.9% NaCl and 5% HCl solutions. The results can be summarized as follows: 1. The microstructure was transformed from $\alpha$ phase to ${\alpha}+{\beta}$ phase by adding Nb 2. The hardness of Ti-20Nb alloy was greater than Cp- Ti, Ti-3Nb alloy. 3. The corrosion resistance of Ti-20Nb alloy was better than that of Cp-Ti, Ti-3Nb alloy in 0.9%NaCl and 5%HCl solutions.

  • PDF

Ti-40Nb계 합금에 열처리와 첨가원소 Ta, Hf이 기계적 성질에 미치는 영향 (Effects of Adding Element Ta, Hf and Heat Treatment on Mechanical Properties of Ti-40Nb Alloys)

  • 이명곤
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.19-25
    • /
    • 2005
  • Ti6Al4V alloy have been mainly used as implant materials. Ti-6Al-4V alloy instead of pure Ti is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength. But it has been reported recently that vanadium component expresses cytotoxicity and carcinogenicity and aluminium component is related with dementia of Alzheimer type. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study, in addition Ta and Hf were added to Ti-40wt.%Nb alloy to improve its mechanical properties. This paper was described the influence of heat treatment of Ti-40Nb alloys with 2wt%Ta, 2wt%Hf on the mechanical properties. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at 1050$^{\circ}C$ for 24 hr. and then were aged after solution heat treat at $\alpha+\beta$ and $\beta$ regions. The mechanical properties of Ti alloys were analysed by hardness test, tensile test, elongation test and SEM test. The results can be summarized as follows: 1. The mechanical properties Ti-40wt.%Nb were improved when 2wt.% Ta and 2wt.%Hf were added. 2. The higher tensile strength value and elongation at solution heat treat was higher than solution heat treat and then were aged.

  • PDF

주조용 티타늄 신합금 개발 (Development of New Titanium Alloys for Castings)

  • 김승언;정희원;현용택;김성준;이용태
    • 연구논문집
    • /
    • 통권29호
    • /
    • pp.163-171
    • /
    • 1999
  • A new titanium alloy system. Ti-xFe-ySi (x,y=0-4 wt%). was designed and characterized with the point at low cost and high strength for casting applications. Fe improved room and elevated temperature mechanical properties owing to solid solution hardening and beta phase stabilization. Si yielded titanium silicides and Si addition over 1 wt% resulted in poor ductility due to coarse silicide chains at prior beta boundaries. The optimum composition was found to be Ti-4Fe-(0.5-1)Si in the viewpoint of tensile strength and ductility which are comparable to the Ti-6Al-4V. The metal-mould reaction was also examined for Ti-xFe and Ti-xSi binary alloy system. The thickness of surface reaction layer w as not affected significantly with Fe content, while it was decreased with Si content. In the Ti-4Si alloy, no reaction layer was found. The depth of surface hardening layer was about $200\mum$ regardless of the mould materials.

  • PDF

TiAl-Nb 합금의 고온상변태와 일방향응고에 관한 연구 (Study on High Temperature Phase Transformation and Directional Solidification of TiAl-Nb Alloy)

  • 박종문;장호승;김성웅;김승언;손지하;오명훈
    • 열처리공학회지
    • /
    • 제29권5호
    • /
    • pp.227-233
    • /
    • 2016
  • Phase transformation phenomenon at high temperature was investigated by using designed TiAl-Nb alloys with addition of the ${\beta}$ stabilizer. Examination of dendritic morphologies in arc-melted button ingot could reveal the crystallography of the primary solidification phase. It was found that the addition of ${\beta}$ stabilizer(Nb) shifted the high temperature region of the binary Ti-Al phase diagram to the high Al composition side so that ${\beta}$ phase forms as a primary crystal even at higher Al composition compared with the binary Ti-Al system. The ${\beta}$ was found to be the primary solidification phase for alloys with Al content less than about 52 at.%. The composition of ${\beta}$ solidification in Ti-Al-Nb ternary system could be determined from the partial liquidus projection which was constructed by observing the microstructure of arc-melted buttons. The Ti-46Al-(6, 8)Nb composition was selected for ${\beta}$ solidification and the directional solidification was performed by a floating zone-type DS apparatus at the growth rate 30 mm/hr respectively.

치과주조용 Ti-Zr-(Cu)계 합금의 경도 및 미세조직 (Hardness and Microstructures of Ti-Zr-(Cu) based Alloys for Dental Castings)

  • 주규지
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.65-71
    • /
    • 2005
  • Experimental Ti-13%Zr and Ti-13%Zr-5%Cu alloys were made in an argon-arc melting furnace. The grade 2 CP Ti was used to control. The alloys were cast into phosphate bonded $SiO_2$ investment molds using an argon-arc casting machine, and The hardness and microstructures of the castings were investigated in order to reveal their possible use for new dental casting materials and to collect useful data for alloy design. The hardness of the Ti-13%Zr-5%Cu alloy(379Hv) became higher than that of Ti-13%Zr(317Hv) alloy, and the hardness of this alloys became higher than that of CP Ti(247Hv). Increasing in the hardness of the Ti-13%Zr-5%Cu alloy was considered to be solid solution hardening as the Ti-Zr system shows a completely solid solution for both high temperature $\beta$phase and low temperature $\alpha$ phase and also the inclusion of the eutectoid structure($\alpha Ti+Ti_{2}Cu$). No martensitic structures are observed in the specimen made of CP Ti, but Ti-13%Zr and Ti-13%Zr-5%Cu alloys show a kind of martensitic structure. Ti-13%Zr-5%Cu shows the finest microstructure. From these results, it was concluded that new alloys for dental casting materials should be designed as Ti-Zr-Cu based alloys.

  • PDF

Nb 함량에 따른 Ti-Nb계 합금의 내식성에 대한 연구 (A study on corrosion resistance of Ti-Nb alloys by Nb contents)

  • 박근형
    • 대한치과기공학회지
    • /
    • 제28권1호
    • /
    • pp.61-66
    • /
    • 2006
  • Titanium alloys have been used for dental materials due to it's very good biocompatibility. Ti-6Al-4V alloy instead of pure titanium is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength and corrosion resistance. But it has been reported recently that the vanadium element expresses cytotoxicity and carcinogenicity and the aluminium element is related with dementia of Alzheimer type and neurotoxicity. The Ti-Nb alloys has designed and examined corrosion resistance. Ti-3wt.%Nb($\alpha$type), Ti-20wt.%Nb(${\alpha}+{\beta}$type) and Ti-40wt.%Nb($\beta$type) alloys were melted by vacuum arc furnace. The corrosion resistance of Ti alloys was evaluated by potentiodynamic polarization test in the solution of 0.9% NaCl and 5% HCl. The results can be summarized as follows: 1) For the corrosion test in the solution of 0.9% NaCl and 5% HCl, the corrosion behaviour of Ti-Nb alloys was similar to ASTM grade 2 CP Ti. 2) The corrosion resistance of Ti-20Nb alloy was better than that of CP-Ti, Ti-3Nb, Ti-40Nb alloy in 0.9% NaCl and 5% HCl, solutions.

  • PDF