• Title/Summary/Keyword: $\beta$-lactoglobulin

Search Result 86, Processing Time 0.025 seconds

A Study on the Physicochemical Properties and Antioxidative Activity of Whey Protein Isolate (WPI의 이화학적 특성과 항산화성에 관한 연구)

  • Ahn, Myung-Soo;Kim, Chan-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.1
    • /
    • pp.97-103
    • /
    • 2007
  • In this study, physicochemical properties and the antioxidative activity of whey protein isolate(WPI) for com germ oil were measured. The pH of WPI was 6.26, and the titrable acidity was 0.18%. The WPI’s moisture content was 5.2% and each of the other element content such as lactose, crude protein, crude ash and crude fat was found to be 0.8%, 90.7%, 2.7% and 0.6%, respectively. The amounts of active SH group in WPI 9 ${\mu}$ M-g and total colony counts of bacteria was 5.9 ${\times}$ 10$^3$ CFU-g. ${\alpha}$-Lactalbumin, ${\beta}$-lactoglobulin and bovine serum albumin(BSA) were shown in WPI as major protein by electrophoresis. The antioxidative effect of WPI and other antioxidants on com germ oil used as substrate was determined by peroxide value(POV) and conjuqated dienoic acid value(CDV). By these results, the order of antioxidative effects could be defined as BHT 0.02%>ascorbic acid 0.1%>WPI 0.1%>WPI 0.02%>ascorbic acid 0.02%>control>tocopherol 0.02%>tocopherol 0.1%, respectively. Also the induction period of com germ oil added with WPI was longer by 1.6 times than that of control(none added any antioxidant). Therefore the fact suggested that WPI could be utilized as a good antioxidative agents.

Physicochemical and Microbiological Properties of Ginseng-Whey Beverages (인삼 유청음료의 이화학적 및 미생물학적 특성)

  • 기해진;홍윤호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.2
    • /
    • pp.208-214
    • /
    • 1993
  • Ginseng-whey beverages were prepared with rennet whey, ginseng, sweetener, honey and Japanese apricot, inoculated with different strains of lactic acid bacteria or unfermented partly. The samples were stored at 4$^{\circ}C$ or 30$\pm$1$0^{\circ}C$ and then physicochemical and microbiological properties were investigated. The yield of whey was 78.8%. The pH-values reduced and acidities increased during the storage period. The contents of solid-substances, ash and lipid in ginseng-whey beverages were 7.90~8.20%, 0.62~0.66% and 0.16%, respectively. The protein contents of ginseng-whey beverages were 0.42~0.56% and the contents were not changed during the storage period. The lactose contents of fermented beverages were higher than those of unfermented beverages. During the storage period (1~5 weeks), the ranges of D(-) - and L(+)- lactic acid contents in fermented ginseng-whey beverages (17.3~156.1 mg/100g, 347.3~1894.2mg/100g) were higher than those of unfermented ginseng-whey beverages (6.2~82.8mg/100g, 7.1~885.5mg/100g). The contents of total saponin in unfermented sample and fermented sample (Lac. casei sub-sp. casei+Str. salivarius sub-sp. thermophilus) were increased during the storage period. But, those of the fermented sample(Lac. acidophilus+Lac. delbrueckii sub-sp. bulgaricus) were reduced. In the electrophoretic results of ginseng-whey beverages, an $\alpha$-lactalbumin and a $\beta$-lactoglobulin bands were shown apparently and there were no changes observed during the storage period. During the storage period (1~3 week) the coliform was not detected and total plate counts and psychrotrophs were increased according to the storage period.

  • PDF

Gene polymorphisms influencing yield, composition and technological properties of milk from Czech Simmental and Holstein cows

  • Citek, Jindrich;Brzakova, Michaela;Hanusova, Lenka;Hanus, Oto;Vecerek, Libor;Samkova, Eva;Krizova, Zuzana;Hostickova, Irena;Kavova, Tereza;Strakova, Karolina;Hasonova, Lucie
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.2-11
    • /
    • 2021
  • Objective: The aim of the study was to evaluate the influence of polymorphic loci and other factors on milk performance and the technological properties of milk. Methods: The analysis was performed on Simmental and Holstein cows in field conditions (n = 748). Milk yield in kg, fat and protein percentage and yield were evaluated. Technological properties were evaluated by milk fermentation ability, renneting, and an alcohol test. Polymorphisms in the acyl-CoA diacylgycerol transferase 1 (DGAT1), leptin (LEP), fatty acid synthase (FASN), stearoyl CoA desaturase 1 (SCD1), casein beta (CSN2), casein kappa (CSN3), and lactoglobulin beta genes were genotyped, and association analysis was performed. Results: The DGAT1 AA genotype was associated with higher milk, protein and fat yields (p<0.05). The MM genotype in the LEP gene was associated with a lower protein percentage and the W allele with a higher protein percentage (p<0.05). In cows with the FASN GG genotype, the protein percentage was higher, but the A allele was associated with higher milk, protein and fat yields than the G allele. The TT genotype in SCD1 was associated with the lowest milk, protein and fat yields and with the highest milk protein percentage (p<0.01). The T allele had higher values than the C allele (p<0.05) except for fat percentage. The genotype CSN3 AA was associated with a significantly heightened milk yield; BB was associated with a high protein percentage. The effect of the alleles on the technological properties was not significant. The CSN2 BB genotype was associated with the best alcohol test (p<0.01), and the renneting order was inverse. Milk from cows with the CSN2 A1A1 genotype was best in the milk fermentation ability. CSN3 significantly affected the technological properties. Conclusion: The findings revealed the potential of some polymorphic loci for use in dairy cattle breeding and for the management of milk quality. In field research, the pivotal role of farms in milk yield, composition and technological properties was confirmed.

Somatic cell score: gene polymorphisms and other effects in Holstein and Simmental cows

  • Citek, Jindrich;Brzakova, Michaela;Hanusova, Lenka;Hanus, Oto;Vecerek, Libor;Samkova, Eva;Jozova, Eva;Hostickova, Irena;Travnicek, Jan;Klojda, Martin;Hasonova, Lucie
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • Objective: The aim of the study was to evaluate the influence of gene polymorphisms and nongenetic factors on the somatic cell score (SCS) in the milk of Holstein (n = 148) and Simmental (n = 73) cows and their crosses (n = 6). Methods: The SCS was calculated by the formula SCS = log2(SCC/100,000)+3, where SCC is the somatic cell count. Polymorphisms in the casein alpha S1 (CSN1S1), beta-casein (CSN2), kappa-casein (CSN3), beta-lactoglobulin (LGB), acyl-CoA diacylglycerol transferase 1 (DGAT1), leptin (LEP), fatty acid synthase (FASN), stearoyl CoA desaturase 1 (SCD1), and 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6) genes were genotyped, and association analysis to the SCS in the cow's milk was performed. Further, the impact of breed, farm, year, month of the year, lactation stage and parity on the SCS were analysed. Phenotype correlations among SCS and milk constituents were computed by Pearson correlation coefficients. Results: Only CSN2 genotypes A1/A2 were found to have significant association with the SCS (p<0.05), and alleles of CSN1S1 and DGAT1 genes (p<0.05). Other polymorphisms were not found to be significant. SCS had significant association with the combined effect of farm and year, lactation stage and month of the year. Lactation parity and breed had not significant association with SCS. The phenotypic correlation of SCS to lactose content was negative and significant, while the correlation to protein content was positive and significant. The correlations of SCS to fat, casein, nonfat solids, urea, citric acid, acetone and ketones contents were very low and not significant. Conclusion: Only CSN2 genotypes, CSN1S1 and DGAT1 alleles did show an obvious association to the SCS. The results confirmed the importance of general quality management of farms on the microbial milk quality, and effects of lactation stage and month of the year. The lactose content in milk reflects the health status of the udder.

Effects of Gamma Irradiation on Queso Blanco Cheese (퀘소블랑코 치즈의 감마선 조사 처리 효과)

  • Jeong, Seok-Geun;Noh, Young-Bae;Shin, Ji-Hye;Han, Gi-Sung;Chae, Hyun-Seok;Yoo, Young-Mo;Ahn, Jong-Nam;Lee, Ju-Woon;Jo, Cheor-Un;Lee, Wan-Kyu;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • Effects of gamma irradiation on chemical, microbiological, and immunological changes of Queso Blanco cheese were investigated. Although Queso Blanco cheese was made by heat pasteurization at 85$^{\circ}$C and addition of acid without lactic starter culture, total bacterial counts and lactic acid bacterial counts of control cheese were 7.65${\pm}$0.04 and 7.64${\pm}$0.02 log CFU/mL, respectively. It was thought that this microbial growth was due to the incomplete inactivation of raw milk by the heat treatment, resulting into growth during the pressing and the drying process. It demonstrated the possibility that if heat- and acid-resistant hazard microbes are present in raw milk, they can grow during the processes. Lactic acid bacterial counts of the irradiated cheese were 5.45${\pm}$0.02 log CFU/mL at 1kGy, 2.12${\pm}$0.12 log CFU/mL at 2kGy, and not detected at 3kGy or higher doses. The reduction of antigenicity by gamma irradiation was not found. It might be caused by the fact that most whey proteins of milk, a major antigen in milk, were already denaturated by heat process and removed during the draining.

  • PDF

Effects of High Pressure Treatment on the Microbiological and Chemical Properties of Milk (초고압 처리가 우유의 미생물학적 및 이화학적 특성에 미치는 영향)

  • Lee, Jieun;Choi, Eun-Ji;Park, Sun Young;Jeon, Ga Young;Jang, Ja-Young;Oh, Young Jun;Lim, Seul Ki;Kim, Tae-Woon;Lee, Jong-Hee;Park, Hae Woong;Kim, Hyun Ju;Jeon, Jung Tae;Choi, Hak-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.267-274
    • /
    • 2014
  • High pressure processing (HPP) is a non-thermal method used to prevent bacterial growth in the food industry. Currently, pasteurization is the most common method in use for most milk processing, but this has the disadvantage that it leads to changes in the milk's nutritional and chemical properties. Therefore, the effects of HPP treatment on the microbiological and chemical properties of milk were investigated in this study. With the treatment of HPP at 600 MPa and $15^{\circ}C$ for 3 min, the quantity of microorganisms and lactic acid bacteria were reduced to the level of 2-3 log CFU/ml, and coliforms were not detected during a storage period of 15 d at $4^{\circ}C$. An analysis of milk proteins, such as ${\alpha}$-casein, ${\beta}$-casein, ${\kappa}$-casein, ${\alpha}$-lactalbumin, ${\beta}$-lactoglobulin by on-chip electorophoresis revealed that the electrophoretic pattern of the proteins from HPP-treated milk was different from that of conventionally treated commercial milk. While the quantities of vitamins and minerals in HPP-treated milk were seen to be comparable to amounts found in raw milk, the enzyme activity of lipase, protease and alkaline phosphatase after HPP treatment was reduced. These results suggest that HPP treatment is a viable method for the control of undesirable microorganisms in milk, allowing for minimal nutritional and chemical changes in the milk during the process.