• Title/Summary/Keyword: $\beta$-ketoacyl synthase

Search Result 16, Processing Time 0.022 seconds

Antimicrobial Flavonoid, 3,6-Dihydroxyflavone, Have Dual Inhibitory Activity against KAS III and KAS I

  • Lee, Jee-Young;Lee, Eun-Jung;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3219-3222
    • /
    • 2011
  • Three types of ${\beta}$-ketoacyl acyl carrier protein synthase (KAS) are important for overcoming the bacterial resistance problem. Recently, we reported the discovery of a antimicrobial flavonoid, YKAF01 (3,6-dihydroxyflavone), which exhibits antibacterial activity against Gram-positive bacteria through inhibition of ${\beta}$-ketoacyl acyl carrier protein synthase III (KAS III). In this report, we suggested that YKAF01 can be an inhibitor ${\beta}$-ketoacyl acyl carrier protein synthase I (KAS I) with dual inhibitory activity for KAS I as well as KAS III. KAS I is related to the elongation of unsaturated fatty acids in bacterial fatty acid synthesis and can be a good therapeutic target of designing novel antibiotics. We performed docking study of Escherichia coli KAS I (ecKAS I) and YKAF01, and determined their binding model. YKAF01 binds to KAS I with high binding affinity ($2.12{\times}10^6$) and exhibited an antimicrobial activity against the multidrug-resistant E. coli with minimal inhibitory concentration (MIC) value of 512 ${\mu}g$/mL. Further optimization of this compound will be carried out to improve its antimicrobial activity and membrane permeability against bacterial cell membrane.

Qualitative PCR Detection of vitamin E-enriched GM Perilla (비타민 E 강화 유전자변형 들깨에 대한 정성 PCR 분석법)

  • Kim, Jae-Hwan;Ahn, Ji-Hye;Song, Hee-Sung;Kim, Kyung-Hwan;Kim, Dong-Hern;Kim, Hae-Yeong
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.192-195
    • /
    • 2006
  • For the development of a qualitative PCR detection method for genetically modified perilla (Perilla frutescens), perilla species-specific gene, KAS-I (Beta-ketoacyl-ACP synthase I), was selected and validated as suitable for the use as an endogenous reference gene in perilla. Primer specificity was first tested by the means of qualitative PCR analysis. The primer pair Pfru3-F/R amplifying the perilla endogenous gene, KAS-I, gave rise to an amplicon 95 bp. No amplified product was observed when DNA samples from 15 different plants were used as templates. Qualitative PCR detection method was assayed with vitamin E-enriched GM Perilla developed in Korea. For the qualitative PCR detection method, the construct-specific detection primer pairs were constructed. The primer pair TMTO-F/R amplifying the junction region of TMT (${\gamma}$-tocopherol methyltransferase) gene and OCS (Octopine synthase) terminator introduced in GM perilla gave rise to an amplicon 148 bp.

Cloning and Analysis of a Type II Polyketide Synthase Gene Cluster from Streptomyces toxytricini NRRL 15,443

  • Yoo An-Na;Demirev Atanas V.;Lee, Ji-Seon;Kim, Sang-Dal;Nam Doo-Hyun
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.649-654
    • /
    • 2006
  • A standard type II polyketide synthase (PKS) gene cluster was isolated while attempting to clone the biosynthetic gene for lipstatin from Streptomyces toxytricini NRRL 15,443. This result was observed using a Southern blot of a PstI-digested S. toxytricini chromosomal DNA library with a 444 bp amplified probe of a ketosynthase (KS) gene fragment. Four open reading frames [thioesterase (TE), $\beta$-ketoacyl systhase (KAS), chain length factor (CLF), and acyl carrier protein (ACP)], were identified through the nucleotide sequence determination and analysis of a 4.5 kb cloned DNA fragment. In order to confirm the involvement of a cloned gene in lipstatin biosynthesis, a gene disruption experiment for the KS gene was performed. However, the resulting gene disruptant did not show any significant difference in lipstatin production when compared to wild-type S. toxytricini. This result suggests that lipstatin may not be synthesized by a type II PKS.

Heterologous Expression of Hybrid Type II Polyketide Synthase System in Streptomyces Species

  • Kim, Chang-Young;Park, Hyun-Joo;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.819-822
    • /
    • 2003
  • Polyketides are an extensive class of secondary metabolites with diverse molecular structures and biological activities. A plasmid-based minimal polyketide synthase (PKS) expression cassette was constructed using a subset of actinorhodin (act) biosynthetic genes (actI-orfl, actI-orf2, actI-orf3, actIII, actⅦ, and actIV) from Streptomyces coelicolor, which specify the construction of an orange-fluorescent anthraquinone product aloesaponarin II, a type II polyketide compound derived from one acetyl coenzyme A and 7 malonyl coenzyme A extender units. This system was designed as an indicator pathway in S. parvulus to generate a hybrid type II polyketide compound via gene-specific replacement. The act ${\beta}-ketoacyl$ synthase unit (actI-orfl and actI-orf2) in the expression cassette was specifically replaced with oxytetracycline ${\beta}-ketoacyl$ synthase otcY-orfl and otcY-orf2). This plasmid-based hybrid PKS cassette generated a novel orange-fluorescent compound structurally different from aloesaponarin II in both S. lividans and S. parvulus. In addition, several additional distinctive blue-fluorescent compounds were detected, when this hybrid PKS cassette was expressed in S. coelicolor B78 (actI-orf2 mutant), implying that the expression of plasmid-based hybrid PKS cassette in Streptomyces species should be an efficient way of generating hybrid type II polyketide compounds.

Comparative Modeling and Molecular Dynamics Simulation of Substrate Binding in Human Fatty Acid Synthase: Enoyl Reductase and β-Ketoacyl Reductase Catalytic Domains

  • John, Arun;Umashankar, Vetrivel;Krishnakumar, Subramanian;Deepa, Perinkulam Ravi
    • Genomics & Informatics
    • /
    • v.13 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • Fatty acid synthase (FASN, EC 2.3.1.85), is a multi-enzyme dimer complex that plays a critical role in lipogenesis. This lipogenic enzyme has gained importance beyond its physiological role due to its implications in several clinical conditions-cancers, obesity, and diabetes. This has made FASN an attractive pharmacological target. Here, we have attempted to predict the theoretical models for the human enoyl reductase (ER) and ${\beta}$-ketoacyl reductase (KR) domains based on the porcine FASN crystal structure, which was the structurally closest template available at the time of this study. Comparative modeling methods were used for studying the structure-function relationships. Different validation studies revealed the predicted structures to be highly plausible. The respective substrates of ER and KR domains-namely, trans-butenoyl and ${\beta}$-ketobutyryl-were computationally docked into active sites using Glide in order to understand the probable binding mode. The molecular dynamics simulations of the apo and holo states of ER and KR showed stable backbone root mean square deviation trajectories with minimal deviation. Ramachandran plot analysis showed 96.0% of residues in the most favorable region for ER and 90.3% for the KR domain, respectively. Thus, the predicted models yielded significant insights into the substrate binding modes of the ER and KR catalytic domains and will aid in identifying novel chemical inhibitors of human FASN that target these domains.

Expression and Characterization of Polyketide Synthase Module Involved in the Late Step of Cephabacin Biosynthesis from Lysobacter lactamgenus

  • Lee, Ji-Seon;Vladimirova, Miglena G.;Demirev, Atanas V.;Kim, Bo-Geum;Lim, Si-Kyu;Nam, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.427-433
    • /
    • 2008
  • The cephabacins produced by Lysobacter lactamgenus are ${\beta}$-lactam antibiotics composed of a cephem nucleus, an acetate residue, and an oligopeptide side chain. In order to understand the precise implication of the polyketide synthase (PKS) module in the biosynthesis of cephabacin, the genes for its core domains, ${\beta}$-ketoacyl synthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), were amplified and cloned into the pET-32b(+) expression vector. The sfp gene encoding a protein that can modify apo-ACP to its active holo-form was also amplified. The recombinant KS, AT, apo-ACP, and Sfp overproduced in the form of $His_6$-tagged fusion proteins in E. coli BL21(DE3) were purified by nickel-affinity chromatography. Formation of stable peptidyl-S-KS was observed by in vitro acylation of the KS domain with the substrate [L-Ala-L-Ala-L-Ala-L-$^3H$-Arg] tetrapeptide-S-N-acetylcysteamine, which is the evidence for the selective recognition of tetrapeptide produced by nonribosomal peptide synthetase (NRPS) in the NRPS/PKS hybrid. In order to confirm whether malonyl CoA is the extender unit for acetylation of the peptidyl moiety, the AT domain, ACP domain, and Sfp protein were treated with $^{14}C$-malonyl-CoA. The results clearly show that the AT domain is able to recognize the extender unit and decarboxylatively acetylated for the elongation of the tetrapeptide. However, the transfer of the activated acetyl group to the ACP domain was not observed, probably attributed to the improper capability of Sfp to activate apo-ACP to the holo-ACP form.

Eicosapentaenoic Acid (EPA) Biosynthetic Gene Cluster of Shewanella oneidensis MR-1: Cloning, Heterologous Expression, and Effects of Temperature and Glucose on the Production of EPA in Escherichia coli

  • Lee, Su-Jin;Jeong, Young-Su;Kim, Dong-Uk;Seo, Jeong-Woo;Hur, Byung-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.510-515
    • /
    • 2006
  • The putative EPA synthesis gene cluster was mined from the entire genome sequence of Shewanella oneidensis MR-1. The gene cluster encodes a PKS-like pathway that consists of six open reading frames (ORFs): ORFSO1602 (multi-domain beta-ketoacyl synthase, KS-MAT-4ACPs-KR), ORFSO1600 (acyl transferase, AT), ORFSO1599 (multi-domain beta-ketoacyl synthase, KS-CLF-DH-DH), ORFSO1597 (enoyl reductase, ER), ORFSO1604 (phosphopentetheine transferase, PPT), and ORFSO1603 (transcriptional regulator). In order to prove involvement of the PKS-like machinery in EPA synthesis, a 20.195-kb DNA fragment containing the genes was amplified from S. oneidensis MR-1 by the long-PCR method. Its identity was confirmed by the methods of restriction enzyme site mapping and nested PCR of internal genes orfSO1597 and orfSO1604. The DNA fragment was cloned into Escherichia coli using cosmid vector SuperCos1 to form pCosEPA. Synthesis of EPA was observed in four E. coli clones harboring pCosEPA, of which the maximum yield was 0.689% of the total fatty acids in a clone designated 9704-23. The production yield of EPA in the E. coli clone was affected by cultivation temperature, showing maximum yield at $20^{\circ}C$ and no production at $30^{\circ}C$ or higher. In addition, production yield was inversely proportional to glucose concentration of the cultivation medium. From the above results, it was concluded that the PKS-like modules catalyze the synthesis of EPA. The synthetic process appears to be subject to regulatory mechanisms triggered by various environmental factors. This most likely occurs via the control of gene expression, protein stability, or enzyme activity.

In Silico Screening of a Novel Inhibitor of β-Ketoacyl Acyl Carrier Protein Synthase I

  • Lee, Jee-Young;Jeong, Ki-Woong;Lee, Ju-Un;Kang, Dong-Il;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1645-1649
    • /
    • 2011
  • [ ${\beta}$ ]Ketoacyl acyl carrier protein synthase I (KAS I) is involved in the elongation of unsaturated fatty acids in bacterial fatty acid synthesis and a therapeutic target of designing novel antibiotics. In this study, we performed receptor-oriented pharmacophore-based in silico screening of E. coli KAS I (ecKAS I) with the aim of identifying novel inhibitors. We determined one pharmacophore map and selected 8 compounds as candidates ecKAS I inhibitors. We discovered one antimicrobial compound, YKAe1008, N-(3-pyridinyl) hexanamide, displaying minimal inhibitory concentration (MIC) values in the range of 128-256 ${\mu}g/mL$ against MRSA and VREF. YKAe1008 was subsequently assessed for binding to ecKAS I using saturation-transfer difference NMR spectroscopy. Further optimization of this compound will be carried out to improve its antimicrobial activity and membrane permeability against bacterial cell membrane.

Why is $\beta$-ketoacyl-ACP synthase II (FabF) is toxic in E. coli fatty acid biosynthesis\ulcorner

  • Lee, Hee-Jung;Cho, Kyoung-Hea;Choi, Keum-Hwa
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.217.2-217.2
    • /
    • 2003
  • In the type II system. there are two elongation enzymes in E. coli, FabB is well-known to its ability to elongate cis-3-decenoly-ACP (C10:1) in unsaturated fatty acid synthesis, whereas FabF is important for the thermal regulation of fatty acid composition by its ability to elongate palmitoleic acid to vaccenic acid. based on their genetic mutation anaylsis. Radiochemical enzyme assay was performed using myristoyl-ACP as a substrate, which is known for general substrate of FabB and FabF. (omitted)

  • PDF

${\beta}$-ketoacyl-acyl carrier protein synthases for fatty acid biosynthesis in bacteria

  • Lee, Hee-Jung;Youn, Youn-Ji;Ok, Jung-In;Lee, Jung-Won;Park, Hyo-Young;Cho, Kyung-Hae;Choi, Keum-Hwa
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.315.3-316
    • /
    • 2002
  • A universal set of genes encodes the components of dissociated. type II. fa11y acid synthase system that is responsible for producing the multitude of fa11y acid structures found in bacterial membranes. We examined the biochemical basis for the production of fatty acids by bacteria. Several genes from HaemophHus influenzae Rd and three genes from Enterococcus faecalis V583 were predicted to encode homologs of the ${\beta}$-ketoacyl-acyl carrier protein synthases I or II or III of Escherichia coli(FabB or BabF, or FabH)were identified in the genomic database. The protein products were expressed. purified, and biochemically characterized. efFabH and hF abH carried out the initial condensation reaction of fatty acid biosynthesis with acetyl-Coenzyme A as a primer. and hFabB and efFabF1 carried out the elongation condensation reaction of fatty acid biosynthesis with myrixtoyl-ACP.

  • PDF